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Intended Learning Outcomes

I Knowledge
I Understand the advantages and disadvantages of distributed element matching, when

compared to lumped element matching networks.
I Be aware that distributed element matching networks can be designed either analytically

(using a computer) or graphically using the Smith Chart.
I Understand the principles behind stub matching networks and be aware that there are

always two stub matching solutions to a given matching problem, which differ in terms of
their bandwidth.

I Understand the theory behind the quarter wave (λ/4) transformer, its properties and
applications.

I Understand bandwidth performance of distributed element matching networks.
I Skills

I Be able to design a single stub matching network to match an arbitrary load.
I Be able to design a double stub matching network to match an arbitrary load.
I Be able to design a quarter-wave transformer matching network to match an arbitrary

load.
I Be able to calculate the bandwidth of a single stub, double stub or quarter-wave

transformer matching network.
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Impedance transformation with line sections
The simplest possible distributed matching network is just a single length of
transmission line, of characteristic impedance Zo, connected between load and source,
as shown in figure 1.

The transmission line section has the effect of transforming any load impedance into
some other impedance, determined by the length of the line section and the line
characteristic impedance Zo.

ZLZo

Zin l

Transmission line section

Figure 1 : Single line matching
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Impedance transformation with line sections

The input impedance of the lossless transmission line section in figure 1, having
arbitrary length, l, characteristic impedance Zo, and terminated with the load ZL, is
given by equation (??):

Zin = Rin + jXin = Zo

(
ZL + jZo tan(βl)
Zo + jZL tan(βl)

)
(??)

This can be expressed in admittance form as :

Yin = Gin + jBin = Yo

(
YL + jYo tan(betal)
Yo + jYL tan(betal)

)
(1)

In order to match two impedances by using a length of transmission line connected
between them we need to transform YL into the desired input admittance, Yin by varying
the quantities Yo and l. The required relationship between YL and Yin referred to above
can be found by equating the real and imaginary parts of equation (1) and solving for l
and Yo. We equate the real parts of both sides of (1) and rearrange to obtain:

tan(βl) = Yo

(
Gin − GL

GinBL + GLBin

)
(2)
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Impedance transformation with line sections

Equating imaginary parts of both sides of (1), substituting (2) and solving for Yo gives:

Yo =

√√√√GLGin

[
1 +

B2
inGL − B2

LGin

GLGin(Gin − GL)

]
(3)

Since Yo must be real for a practical line, the condition for single line matching to be
realisable can be taken from (3) to be:

B2
inGL − B2

LGin

GLGin(Gin − GL)
> 1 (4)

The realisability condition of equation (4) can be represented by circles on the Smith
chart.

When condition (4) is not satisfied these circles have the advantage of revealing
whether the addition of a parallel stub will move the load admittance into an area where
single line matching is possible.

Due to this limitation the single line matching technique is rarely used in practice.
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Single Stub Matching
I The ’single stub’ matching technique makes use of the fact that a length of

transmission line terminated in either an open or short circuit will behave as a pure
susceptance whose value depends on the nature of the termination (open or
short) and the length of the line section. Such a section of line is called a stub.

I The single stub matching network actually consists of two parts : the stub itself, of
length l, and a length of transmission line, length d, connected between the load
and the point at which the stub is attached.

I A typical single stub matching network implemented in microstrip is illustrated
schematically in figure 2.

ZL(YL)
l

d

Zo

Zo

Zo

Figure 2 : Open circuit stub matching implemented in microstrip
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Single Stub Matching

I Stubs are widely used in
planar microwave circuits,
such as microstrip and MMIC
implementations as they are
extremely easy to fabricate.
In these media the stub is
connected in parallel with the
main line.

I Because a parallel connection
is used, the design procedure
is best carried out in terms of
admittances.

I The open circuit stub
configuration is shown in
figure 3(a) and the short
circuit stub configuration is
shown in figure 3(b).

I The lines all have
characteristic impedance Zo
(characteristic admittance
Yo).

ZL(YL)

d1 or d2

l1 or l2

Zo

open circuit

Zin(Yin) p

p’

(a)

ZL(YL)

d1 or d2

l1 or l2

Zo

short circuit

Zin(Yin) p

p’

(b)

Figure 3 : Generic single stub matching networks : (a)
Open circuit stub, (b) Short circuit stub
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Single stub matching : Analytical approach
We start by defining the input admittance of the line at the plane pp’ in figure 3(a) or
figure 3(b), at a distance ’d’ from the load as Yin. Applying equation (1), and
normalising by dividing by Yo, gives us the normalised admittance, yin, looking into the
line at the plane pp’ as:

yin =
yL + j tan(βd)

1 + jyL tan(βd)
=

yL + jt
1 + jyLt

(5)

where:

t = tan(βd) (6)

β =
2π
λ

(7)

In general yL will be complex, i.e.:

yL = gL + jbL (8)

so we can rewrite (5) as:

yin =
gL + j(bL + t)

(1− bLt) + jgLt
(9)
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Single stub matching : Analytical approach

Realising the denominator of (9) gives us the real and imaginary parts of yin as follows:

gin =
gL(1 + t2)

(1− bLt)2 + g2
L t2

(10)

bin =
bL(1− t2) + t(1− b2

L − g2
L)

(1− bLt)2 + g2
L t2

(11)

The essential idea behind single stub matching is that at some point on the line
normalised susceptance looking into the line, gin, will be unity. At this point, a parallel
stub can be added to exactly cancel the line susceptance, bin, resulting in a perfect
match, i.e. yin = 1 + j0. The distance between the load and this point, pp’ in figure 3(a)
or figure 3(b), where the stub is to be attached, can be calculated by setting gin equal to
unity in equation (10), which results in the following quadratic in t:

t2(g2
L + b2

L − gL)− 2bLt + (1− gL) = 0 (12)

This can be solved for t as follows :

t =
bL ±

√
gL((1− gL)2 + b2

L)

g2
L + b2

L − gL
(13)
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Single stub matching : Analytical approach

From (13) we can determine the value of d, as a fraction of a wavelength, as follows :

d
λ

=


1
2π

tan−1(t) if t ≥ 0

1
2π

(tan−1(t) + π) if t < 0

(14)

It can easily be shown that, in the special case of purely resistive loads (i.e. bL = 0)
there is a single solution to (12), namely :

t =

√
1
gL

(15)

In the more general case of complex loads, we can see from (13) and (14) that there
are two values of line length, d, that satisfy the condition gin = 1. Let us refer to these
as d1 and d2.

For each value of d determined from equation (13) and (14), the susceptance of the
stub required to cancel the line susceptance can be found by entering the value, d1 or
d2 (i.e. the values corresponding t1 or t2), into equation (11). The stub susceptance is
simply the same magnitude but opposite polarity of the bin value thus calculated.
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Single stub matching : Analytical approach
The length of the stub needed to realise the susceptance bstub = −bin, is given by the
familiar equations for normalised susceptance of a lossless line terminated in open
circuit and short circuit respectively (which can be easily derived by setting yL = 0 or
yL =∞ in (9)):

bopen = tanβlopen (16)

bshort = − cot βlshort (17)

Where lopen and lshort refer to the lengths of the stubs in figure 3(a) and figure 3(b),
respectively. Note that, since there are two values of d that satisfy (13), there will be a
different value of either open circuit or short circuit stub length corresponding to each
value of d. In other words, there will be four possible matching network solutions, as
follows :

1. d1 with an open circuit stub.
2. d1 with a short circuit stub.
3. d2 with an open circuit stub.
4. d2 with a short circuit stub.

If any of the equations above result in negative electrical lengths, or an electrical length
that is impractically short, we can simply add ±(nλ)/2 to get an equivalent positive
electrical length.
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Single stub matching : Graphical approach

The procedure can be summarised in 4 steps as follows :
Step 1: Plot the normalized load impedance on the Smith chart
Step 2: Draw the contant VSWR circle and determine the normalised load admittance
Step 3: Move around the constant VSWR circle toward the source until you cross the unit

conductance circle. At this point, the normalised admittance looking into the line, yin, is 1 + jb
(or 1-jb, depending on which intersection with the unit conductance circle is chosen).

Step 4: Add in a shunt stub at this point with susceptance of equal magnitude and opposite sign to
±b. This cancels the transformed load susceptance at the attachment point, resulting in a
perfect match : yin = 1 + j0

The procedure is best illustrated by an example, in the following slides.
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Single stub matching : Graphical example

As an illustrative example, we will
consider the matching of a load
ZL = 25− j50Ω to a 50Ω
transmission line system, using
the graphical method, as follows:

I Normalise the load :
zL = (25− j50)/50 = 0.5− j and
plot this point on the Smith Chart
(indicated as ’zL ’ in figure 4).

I Draw the constant VSWR circle
through this point and thereby
determine the normalised load
admittance as yL = 0.4 + j0.8,
which is 180o around the VSWR
circle (indicated as ’yL ’ in figure 4).
Note that from this point on, all
points on the Smith Chart are to
be interpreted as normalised
admittances.
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Figure 4 : Single stub matching: graphical method
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Single stub matching : Graphical example

I Starting at yL, we move around
the constant VSWR circle
clockwise towards the generator
until we cross the unit
conductance circle at point ’P’ in
figure 4. The normalised
admittance looking into the line at
point ’P’ is now 1+jb. Note that if
we keep going clockwise around
the constant VSWR circle we will
cross the unit conductance circle
again at point ’Q’. The normalised
admittance looking into the line at
point ’Q’ is 1-jb. The lengths of
line, from the load to the point of
stub attachment, in each of these
cases is d1 and d2 respectively. In
our example, we can determine
the line lengths, in terms of guided
wavelength, by reading off the
’wavelengths towards generator’
scale on the outer boundary of the
Smith chart. This gives us the
following :

d1 =(0.178− 0.115)λ = 0.063λ
d2 =(0.321− 0.115)λ = 0.206λ
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Figure 5 : Single stub matching: determination of stub
lengths for point ’P’
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Single stub matching : Graphical example

I We now need to determine the
susceptance of the shunt stub to
be attached at either point ’P’ or
point ’Q’. This should be equal in
magnitude and opposite in sign to
±b, as appropriate. The addition
of the stub will cancel the
transformed load susceptance at
the attachment point, resulting in
a perfect match at that point, i.e.
yin = 1 + j0. We determine the
input susceptance of the line at
the point of stub attachment by
finding the constant susceptance
circle which intersects the
constant conductance circle at
points ’P’ and ’Q’ in figure 6. The
values in our example are b=1.6
and b=-1.6 respectively.
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Figure 6 : Single stub matching: graphical method

© Poole-Darwazeh 2015 Lecture 10 - Distributed Element Matching Networks Slide17 of 74



Single stub matching : Graphical example

I Now that we know the input
susceptance of the line where the stub
is to be attached (points ’P’ or ’Q’), we
can use the Smith Chart to determine
the length of the short or open circuit
stub required. This procedure is
illustrated for point ’P’ in figure 7 and
for point ’Q’ in figure 8.

I Note that the stub susceptance is of
opposite sign to the line input
susceptance. The length of the stub is
found by moving clockwise around the
chart starting at the open circuit
(y = 0) or short circuit (y =∞) points
(labeled ’O/C’ and ’S/C’ respectively in
figure 7 and figure 8) until the desired
location on the periphery of the Smith
chart is reached.

I This location is found by drawing a
radial through the point where the
constant reactance circle intersects the
boundary of the Smith chart. We can
then read off the value on the
’wavelengths towards generator’ scale.
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Figure 7 : Single stub matching: determination of stub
lengths for point ’P’
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Single stub matching : Graphical example

The respective stub lengths are
l1open and l1short in the case of
point ’P’ (figure 7) and l2open and
l2short in the case of point ’Q’
(figure 8). In our example these
values have been determined with
reference to figure 7 and figure 8
as follows :

l1open =0.340λ
l1short =(0.340− 0.25)λ = 0.09λ
l2open =0.160λ
l2short =(0.160 + 0.25)λ = 0.410λ
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Figure 8 : Single stub matching: determination of stub
lengths for point ’Q’
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Single stub matching example : solutions

(25− j50)Ω0.340λ
0.063λ

Zo = 50Ω

o/c

(a)

(25− j50)Ω0.090λ
0.063λ

Zo = 50Ω

s/c

(b)

(25− j50)Ω0.160λ
0.206λ

Zo = 50Ω

o/c

(c)

(25− j50)Ω0.410λ
0.206λ

Zo = 50Ω

s/c

(d)

Figure 9 : Four possible microstrip stub matching networks for the load 25− j50Ω: (a) Point ’P’ -
open circuit stub, (b) Point ’P’ - short circuit stub, (c) Point ’Q’ - open circuit stub, (d) Point ’Q’ - short
circuit stub
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Double Stub Matching
I One limiting characteristic of single stub matching is that the location of the matching stub is a

function of the load impedance. This may not be an issue in most cases, but in some practical
circumstances there may be constraints on the physical positioning of the stub.

I In such cases we can use an alternative matching technique called Double stub matching,
which employs two stubs, spaced a fixed distance apart.

I The advantage of the double stub matching approach is that, although the distance between
the two stubs is generally kept constant, the first stub may be placed at any distance from the
load.

I For this reason, the double stub technique is often used to implement variable tuners, where
the match can be adjusted by varying only the stub lengths, with the stub locations on the
main line remaining fixed.

yL

d

Yo

Stub 2 Stub 1

yin b

b’

a

a’

Figure 10 : Double stub matching, first stub at load
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Double stub matching : Analytical approach

Let us define ybb′ as the normalised input admittance looking into the line at the plane
bb’ in the absence of Stub 2. If the susceptance of Stub 1 has been correctly chosen
(using a method we will explain shortly) then ybb′ can be written as :

ybb′ = l + jbbb′

or
ybb′ = l − jbbb′

Where ±bbb′ is the residual susceptance of the line. We now add Stub 2 to cancel this
residual line susceptance. The line to the left of Stub 2 will then be matched to the load
since,

yin = ybb′ + jbStub2

or
yin = ybb′ − jbStub2

Where bStub2 is equal and opposite in sign to bbb′ . We therefore have a perfect match
at bb’, i.e. yin = 1.

As with single stub matching, we will outline both analytical and graphical design
approaches.
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Double stub matching : Analytical approach

The normalised admittance at the load in figure 10, with Stub 1 attached is :

yaa′ = gL + j(bL + bStub1)

Where bL is the load susceptance and bStub1 is the susceptance of Stub 1. After this
impedance has been transformed through the length of line, d, and prior to the
attachment of Stub 2, the normalised admittance at point bb’ in figure 10 is :

ybb′ =
gL + j(bL + bStub1 + t)

1 + jt(gL + j(bL + bStub1))
(18)

where, again:

t = tan(βd) (19)

and:

β =
2π
λ

(20)
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Double stub matching : Analytical approach

We know that the normalised conductance at point bb’ must be unity, since this is
where we will attach Stub 2 (which can only add susceptance) to achieve a perfect
match. We therefore set the real part of equation (18) equal to 1, which gives us the
following relationship between gL, bL and t :

g2
L − gL

1 + t2

t2
+

(1− t(bL + bStub1))2

t2
= 0 (21)

Re-arranging (21) yields the requisite value of bStub1 as :

bStub1 = −bL +
1±

√
gL(1 + t2)− g2

L t2

t
(22)
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Double stub matching : Analytical approach

The residual line susceptance at the point bb’, with Stub 1 attached, is given by the
imaginary part of (18) :

bbb′ =
(1− t(bL + bStub1))(bL + bStub1 + t)− g2

L t
(1− t(bL + bStub1))2 + t2g2

L
(23)

Now, substituting the value of bStub1 given by (22) into (23) gives us the residual line
susceptance at bb’ solely in terms of gL and t :

bbb′ =
∓
√

gL(1 + t2)− g2
L t2 − gL

gLt
(24)

The susceptance of Stub 2 is chosen to cancel the residual line susceptance at bb’,
therefore :

bStub2 = −bbb′
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Double stub matching : Analytical approach

We are now in a position to define bStub2 solely in terms of gL and t as follows :

bStub2 = −

∓
√

gL(1 + t2)− g2
L t2 − gL

gLt

 (25)

Where the ∓ in (25) is paired with the ± in (22).
Once we have determined the required stub susceptances from (22) and (25), the
electrical length of the stubs can be calculated for either short or open circuited stub by
applying the familiar relationships (16) and (17).
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Double Stub Matching Analytical Example
You need to match load consisting of a 4nH inductor which has a series internal
resistance of 19.2 Ω to a 50 Ω lossless co-axial transmission line by means of a double
stub matching network, consisting of two short circuit stubs, spaced 0.375λ apart. The
stub nearest to the load is 0.1λ away from it. Determine the possible combinations of
stub lengths which are required to match the load to the line at the operating frequency
of 1835 MHz. You may assume all line sections and stubs are 50 Ω.
The load impedance is first calculated :

ZL =19.2− j(2π × 1.835× 109 × 4× 10−9)

ZL =19.2 + j46.17Ω

The normalised load impedance and admittance are therefore:

ZL =
(19.2 + j46.17)

50
= 0.384 + j0.923

yL =
1

(0.384 + j0.923)

=
0.384− j0.923

0.9994
= 0.384− j0.923
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Double Stub Matching Analytical Example
Stub 1 is attached at a distance lx = 0.1λ from the load, so we need to work out the
admittance yaa′ at this point of attachment. We can employ equations (18) and (19)
which give us the conductance and susceptance of a load, yL, translated a distance, lx ,
towards the generator. In this case t = tan(0.2π) = 0.727, therefore :

gaa′ =
0.384(1 + 0.7272)

(1 + 0.923× 0.727)2 + 0.3842 × 0.7272

gaa′ =
0.587
2.870

gaa′ = 0.204

and

baa′ =
−0.923(1− 0.7272) + 0.727(1− (−0.923)2 − 0.3842)

(1 + 0.923× 0.727)2 + 0.3842 × 0.7272

baa′ =
−0.435
2.870

baa′ = −0.154
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Double Stub Matching Analytical Example

Using this value of yaa′ = 0.204− j0.154 as the translated load, we now calculate the
required value of Stub 1 using equation (22), this time using t = tan(0.375× 2π) = −1
:

bStub1 =0.154 +
1±

√
0.204(1 + (−1)2)− 0.2042 × (−1)2

−1
bStub1 =− 0.846± (−0.606)

We therefore have two solutions for Stub 1, namely :

bStub1 = −1.452

and
bStub1 = −0.240
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Double Stub Matching Analytical Example

We calculate the admittance of Stub 2 by applying equation (25) :

bStub2 =−
(
∓
√

2× 0.204− 0.2042 − 0.204
−0.204

)

bStub2 =−
(
∓0.605− 0.204
−0.204

)

We therefore have two solutions for Stub 2, namely :

bStub2 = 1.967

and
bStub2 = −3.967
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Double Stub Matching Analytical Example

We can now apply equations (16) and (17) to determine the length of short circuit and
open circuit Stub 1 and 2 for both solutions as summarised in table 1.

Table 1 : Double stub matching: analytical solutions

Normalised Length Length
susceptance (s/c stub) (o/c stub)

Solution 1 : Stub 1 = -1.452 Stub 1 = 0.096λ Stub 1 = 0.346λ
Stub 2 = -3.967 Stub 2 = 0.039λ Stub 2 = 0.289λ

Solution 2 : Stub 1 = -0.240 Stub 1 = 0.212λ Stub 1 = 0.462λ
Stub 2 = 1.967 Stub 2 = 0.425λ Stub 2 = 0.175λ
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Double stub matching : Graphical approach
I Double stub matching networks can also be designed graphically using the Smith

Chart.
I Since we are adding elements in parallel so we will be using the Smith Chart is

being used in admittance mode.
Consider the arrangement shown in figure 11. The total admittance at the point aa’ is

yaa′ = yL + jbStub1

where yL is the admittance of the load and bStub1 is the susceptance of Stub 1.

yL

d

Yo

Stub 2 Stub 1

yin b

b’

a

a’

Figure 11 : Double stub matching, first stub at load
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Double stub matching : Graphical approach

I Since stub 2 can only contribute
susceptance, ybb′ must be some point
on the unit conductance circle on the
Smith Chart (circle 1 in figure 13). We
therefore deduce that yaa′ must lie on
a circle of equal radius but having its
centre rotated d wavelength towards
the load.

I This principle can be illustrated by
considering figure 12 where we have
chosen d to be λ/4. Picking an
arbitrary point, A, which lies on the unit
conductance circle, we see that the
effect of adding the line d is to rotate
this point around the constant VSWR
circle through A, 0.25λ towards the
load to a point A’.

I Another point B on the unit
conductance circle is similarly rotated
0.25λ to point B’. The same procedure
can be carried out for all the other
points C to J in figure 12.
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Figure 12 : The principle behind double stub matching
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Double stub matching : Graphical approach

I If the locus is then drawn through all
the primed points in figure 12, it is
found to be a circle of the same radius
as the unit conductance circle whose
centre O’ has been rotated 0.25λ
towards the load from O.

I A similar transformation exists for any
other value of d. in each case the
locus of points on the unit conductance
circle maps into a circle of the same
radius, whose centre lies d
wavelengths counter-clockwise
towards the load from the centre of the
unit conductance circle.

I Having established this principle, the
method of determining the stub lengths
using the Smith Chart may be
illustrated with reference to figure 13.
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Figure 13 : Double stub matching : graphical method
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Double stub matching : Graphical approach

I In figure 14, circle 2 represents the unit
conductance circle transformed
through some distance d wavelengths
towards the load by means of the fixed
line section, d, in figure 10.

I Let us pick a load admittance
represented by the point A in figure 13.
The constant conductance circle (solid
circle) through point A cuts circle 2 at
two locations, B and C. Hence, to
achieve a match, we need to transform
A to point B or C by choosing a value
of Stub 1 which adds the correct
susceptance to move point A in the
right direction along the constant
conductance circle to either point B or
point C.

I The first stub, therefore, must present
a normalised susceptance equal to the
difference between the susceptance at
point A and the susceptance at points
B or C.
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Figure 14 : Double stub matching : graphical method
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Double stub matching : Graphical approach

I We determine the susceptance values
by looking at which constant
susceptance circles the points A,B and
C lie on and subtracting one
susceptance value from another. With
the addition of Stub 1 with a value thus
calculated, the input admittance at
point B or C becomes yaa′ .

I The fixed line section, of length d, now
transforms yaa′ to ybb′ . The
admittance at B or C when translated d
wavelengths towards the generator will
be given by points B’ or C’,
respectively, on the unit conductance
circle. This means that the admittance
at B’ is ybb′ = 1 + jbB′ and the
admittance at C’ is ybb′ = 1 + jbC′ .

I The second stub therefore must
present a normalised susceptance
equal and opposite to the susceptance
value at B’ and C’, these values being
determined by looking at the
susceptance scale on the Smith Chart.
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Figure 15 : Double stub matching : graphical method
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Double Stub Matching : forbidden regions

There are limitations on the load admittance that can be matched with the configuration
shown in figure 10, as we will now show. Equation (21) is a quadratic in gL which has
the following solution :

gL =
1 + t2

t2

[
1±

√
1− 4t2(1− t(bL + bStub1))2

(1 + t2)2

]
(26)

We note that the term inside the square root in equation (26) is of the form (1 - x). In
order to meet the requirement that gL should be a real number, the value of x must lie
between 0 and 1. In the case of equation (26), this leads to the following boundaries on
the value of gL :

0 ≤ gL ≤
1 + t2

t2
(27)

With reference to standard trigonometric identities, (27) can be restated as :

0 ≤ gL ≤
1

sin2 βd
(28)
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Double Stub Matching : forbidden regions

I The limiting conditions set by (28)
define a forbidden region on the Smith
Chart within which loads are
unmatchable with a double stub tuner.
The forbidden region is bounded by a
constant conductance circle whose
value depends solely on the electrical
stub separation, d/λ.

I Let’s say, for example, we set
d = λ/8. Then βd = π/4 and
sin2 βd = 0.5. This means that the
forbidden region will be bounded by the
g = 2 circle, as shown in figure 16.

I In other words, only constant
conductance circles lying outside the
forbidden region in figure 16, can
intersect with the translated g=1 circle.
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Figure 16 : Double stub matching: forbidden region for
d=λ/8
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Double Stub Matching : forbidden regions
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Double Stub Matching

If gL lies within the forbidden
region (i.e. it is greater than the
value set by (28)) then we can still
use the double stub technique with
the first stub located a minimum
distance, lx , away from the load
towards the generator, as shown in
figure 17.

yL

λ
8 lx

Yo

Stub 2 Stub 1

yin b

b’

a

a’

Figure 17 : Double stub matching, first stub located lx from
the load
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Double Stub Matching

I The added line length has the effect of
transforming the load admittance so
that the transformed value of gL is
reduced to a value below the limit set
by (28). This procedure is illustrated in
figure 18, where point A represents the
normalised admittance of the load and
points A1, A2 and A3 represent the
admittance of the load transferred to a
point on the line towards the generator
at a distance lx = l1, l2, or l3
respectively from the load.

I Referring to figure 18, it can be seen
that the constant conductance circle
through point A, representing the load
admittance, never intersects the unit
conductance circle transferred towards
the load by λ/8 (circle 2). Hence, this
load cannot be matched using this
particular double stub tuner (i.e. with
d = λ/8) when the first stub is placed
at the load.
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Figure 18 : Double stub matching : location of Stub 1
with respect to the load
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Double Stub Matching

I To achieve a match, the load conductance must be reduced to such a value that the constant
conductance circle through the new load point on the Smith Chart intersects circle 2. This can
be achieved by shifting the point of application of the first stub towards the generator, in other
words by adding the length of line lx in figure 17.

I The transformed value of load conductance is gradually reduced as the distance lx is
increased. This is equivalent to moving clockwise around the constant VSWR circle, starting
at A, in figure 18 and moving through points A1,A2,A3, etc. It can be seen from figure 18 that
if the point of application of the first stub (points aa’ in figure 17) is at a distance equal to or
greater than l1, an effective match can be achieved, as the constant conductance circles
through A1,A2,A3, etc. all intersect circle 2.

I We conclude, therefore, that for double stub matching to be effective, Stub 1 must be
connected at a minimum distance l1 from the termination, where the value of l1 depends on
the value of the load conductance.

I Alternatively, by keeping the Stub 1 connected right at the load, the same result can be
achieved by altering the distance between the stubs. If Stub 1 is connected at the load, then
an effective match can be achieved by altering the distance between the stubs until the circle 2
cuts the constant conductance circle through the load admittance point.
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Double Stub Matching Graphical Example
Design a double stub matching network to match a load of ΓL = 0.667∠90o to the a 50 Ω lossless
line. The two stubs are spaced 0.375λ apart. The stub nearest to the load is 0.1λ away from it.
Carry out two designs: one using open circuit and one using short circuit stubs.

I We start by drawing the unit
conductance circle (circle 1) and
the same circle rotated through
3
8λ towards the load (circle 2) in
figure 19.

I We then locate the load reflection
coefficient = 0.667∠90o as the
impedance point ’A’ on the Smith
Chart, and draw the constant
VSWR (=5) circle through this
point. The VSWR=5 circle is
designated as circle 3 in figure 19.

I We obtain the load admittance as
point B by rotating the point A
around circle 3 through 180o in
either direction. From this point
onwards, all coordinates on the
Smith Chart represent normalised
admittance (g + jb).
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Figure 19 : Double stub matching, Example 1
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Double Stub Matching Graphical Example
We are told that the distance to Stub 1 is 0.1λ from the load. We therefore locate point
C by rotating the load admittance 0.1λ towards the generator in figure 19. We note that
point C lies on the g=0.2 constant conductance circle (circle 4), which means that we
can move back and forth along this circle by adjusting the susceptance of Stub 1.

We see that the g=0.2 constant conductance circle (circle 4) intersects the translated
unit conductance circle (circle 2) at points D and F. Since there are two points of
intersection, there must be two values of Stub 1 that can provide a match. The
normalised susceptance corresponding to point D is found by looking at which constant
susceptance circles points C and D lie on and subtracting one from the other. This
gives us :

bStub1D = (−0.40)− (−0.15) = −0.25 (29)

We locate the -0.25 constant susceptance circle on the perimeter of the Smith Chart
and read off the value of 0.461λ on the ’wavelengths toward generator’ scale. For a
short circuit stub, we trace the stub length starting at the y =∞ point on the Smith
Chart. The electrical length of the short circuit Stub 1 for point D is therefore :

lStub1Ds = 0.461− 0.25 = 0.211λ (30)

The open circuit Stub 1 for point D is ±0.25λ away (we obviously chose ±0.25λ to give
us a positive electrical length) :

lStub1Do = 0.211 + 0.25 = 0.461λ (31)
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Double Stub Matching Graphical Example

We apply the same approach to determine the susceptance of Stub 1 for point F :

bStub1F = (−1.6)− (−0.15) = −1.45 (32)

Locating the point representing susceptance b = −1.45 on the ’wavelengths toward
generator scale’ gives us the following stub lengths:

lStub1Fs =0.346− 0.25 = 0.096λ
lStub1Fo =0.096 + 0.25 = 0.346λ

The length of line separating the two stubs (d = 0.375λ) has the effect of translating
point D and F into the corresponding points E and G on the unit conductance circle in
figure 19. The susceptance of Stub 2 can be determined by looking at which constant
susceptance circle these two points lie on, and remembering that the susceptance of
Stub 2 must have equal magnitude but opposite sign in order to cancel the residual line
susceptance. Once again, since there are two intersections with the unit conductance
circle, we have two possible values of Stub 2 that can provide a match. Note that point
D is paired with point E and point F is paired with point G, so there are actually only two
possible solutions consisting of the stub pairs D,E and F,G.
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Double Stub Matching Graphical Example

For points E and G we can read off the residual line susceptances as :

bE =− 2.00
bG =4.00

Locating the opposite polarity susceptance points on the ’wavelengths towards
generator’ scale on the outer boundary of the Smith chart gives the following electrical
lengths for Stub 2 using short circuit stubs :

lStub2Gs =0.289− 0.25 = 0.039λ
lStub2Es =0.176 + 0.25 = 0.426λ

The equivalent open circuit stubs are ±0.25λ in length, therefore :

lStub2Go =0.039 + 0.25 = 0.289λ
lStub2Eo =0.426− 0.25 = 0.176λ
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Double Stub Matching Graphical Example

So, we have four possible double stub matching network solutions, which are
summarised in table 2.

Table 2 : Double stub matching: graphical solutions

Normalised Length Length
susceptance (s/c stub) (o/c stub)

Solution 1 : (D,E) Stub 1 = -0.25 Stub 1 = 0.211λ Stub 1 = 0.461λ
Stub 2 = 2.00 Stub 2 = 0.426λ Stub 2 = 0.176λ

Solution 2 : (F,G) Stub 1 = -1.45 Stub 1 = 0.096λ Stub 1 = 0.346λ
Stub 2 = -4.00 Stub 2 = 0.039λ Stub 2 = 0.289λ

Notwithstanding the arbitrary assignment of "Solution 1" and "Solution 2" categories,
and rounding errors, the reader can see that these results are basically the same as
those obtained by numerical calculation in example ??.
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Double Stub Matching Graphical Example
For clarity, a schematic representation of the two double stub matching network
solutions implemented in microstrip implementation is shown in figure 20 :

ΓL0.426λ 0.211λ

d=0.375λ l=0.1λ

Zo = 50Ω

s/c s/c

(a)

ΓL0.036λ 0.096λ

d=0.375λ l=0.1λ

Zo = 50Ω

s/c s/c

(b)

ΓL0.176λ 0.461λ

d=0.375λ l=0.1λ

Zo = 50Ω

o/c o/c

(c)

ΓL0.289λ 0.346λ

d=0.375λ l=0.1λ

Zo = 50Ω

o/c o/c

(d)

Figure 20 : Four possible double stub matching networks for the load ΓL = 0.667∠90o

implemented in microstrip : (a) Solution 1 (points D,E) s/c stubs, (b) Solution 2 (points F,G) s/c
stubs, (c) Solution 1 (points D,E) o/c stubs, (d) Solution 2 (points F,G) o/c stubs
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Triple Stub Matching
I Double stub matching is not possible for certain values of load impedance and

stub placements. One solutions is to add a third stub.
I Triple stub matching is rarely used as a design technique in fixed media, such as

microstrip, but commercial "Triple Stub Tuners" are available as standard
components in waveguide or co-axial media.

I These tuners are frequently implemented with three stubs spaced at unequal
intervals, which ensures that any value of passive load can be matched. Short
circuit stubs are mainly used in co-axial or waveguide, for ease of adjustment.

I Examples of waveguide and co-axial triple stub tuners are shown in figure 21.

(a) Waveguide triple stub tuner (b) co-axial triple
stub tuner

Figure 21 : Examples of rectangular waveguide and co-axial triple stub tuners (reproduced by kind
permission of University College London, Department of Electronic and Electrical Engineering)
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Quarter-Wavelength Transformer (QWT)
Consider a situation where we have connected a length of transmission line of length λ/4 and
characteristic impedance Z1 in front of the load :

ZLZo Z1

Zin
λ/4

Figure 22 : Quarter Wave Transformer

From equation (??), the input impedance of any lossless line section, of characteristic impedance
Z1, is given by :

Zin = Z1

(ZL + jZ1 tan (βl)
Z1 + jZL tan (βl)

)
(33)

But in figure 22 we have set l = λ/4, so (33) now becomes:

Zin = Z1 ·
ZL + jZ1 tan

( 2π
λ
·
λ

4

)
Z1 + jZL tan

( 2π
λ
·
λ

4

) = Z1 ·
ZL + jZ1 tan

(
π

2

)
Z1 + jZL tan

(
π

2

) (34)

Since tan(π/2) =∞ (34) reduces to:

Zin =
Z2
1

ZL
(35)
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Quarter-Wavelength Transformer (QWT)

Equation (35) tells us that a quarter wave line section can act as a matching network
between a load, ZL, and a required input impedance, Zin, provided that the line section
has a characteristic impedance given by :

Z1 =
√

ZLZin (36)

Such a line section is called a Quarter Wave Transformer (QWT).

Equation (43) implies that a real QWT can only be used to match Resistive loads, but
we will show that the QWT can also be used to match complex loads with a little
modification.
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Using a QWT match a complex load
I Equation (43) implies that, since the characteristic impedance of the QWT must be real, this

QWT can only be used to match purely resistive loads, (ZL = RL + j0). To match complex
loads, we would need a transmission line with a complex characteristic impedance, i.e. the
line would have to be lossy. This is generally undesirable.

I One alternative is to transform the complex load into a real quantity by inserting a transmission
line section between the load and the QWT, as illustrated, in microstrip form, in figure 23.

I For convenience we will assume that the added line section has the system characteristic
impedance, Zo.

ZL

Zo Z1 Zo

λ/4

Line section, lx

Figure 23 : Quarter Wave Transformer (QWT) with a complex load
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Using a QWT match a complex load

The effect of adding the extra line section, lx , in figure 23 can be demonstrated by
considering the input impedance, Zin of any line section terminated by a load ZL. Zin is
given by equation (??), which can be expressed in normalised terms as :

zin =
ZL + jt
1 + jZLt

(37)

where, again:

t = tan
(
2π lx

λ

)
Since we need the input impedance of the added line section in figure 23 to be purely
real, we set =(zin) = 0 in (37), which results in :

(xL + t)(1− xLt)− r2L t
(1− xL)2 + r2L t

= 0 (38)

where ZL = rL + jxL.
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Using a QWT match a complex load

I Figure 24 illustrates how such a
matching network can be
designed using a Smith chart.

I We plot the normalised load
impedance, zL, on the chart at
point ’A’. We then draw the
constant VSWR circle through the
point A, and we note that this
circle crosses the real axis of the
chart at two points, B and C. At
both these points the input
impedance of the line section is
purely real.

I We note that at point B Zp > Zo
and at point C Zp < Zo, the
lengths of series line required to
achieve this are given by the
distances AB and AC=AB+0.25λ
in figure 24.

0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 10 200

0.1

0.2

0.3

0.4

0.5

0.
6 0.

7 0.
8 0.
9 1

1.
5

2

3

4

5

10

20

−0.1

−0.2

−0
.3

−0
.4

−0
.5

−
0.
6

−
0.
7

−
0.
8

−
0.
9

−
1

−
1.
5

−2

−3

−4
−5

−10

−20

lx

ZT =
√

Zo × ZBZT =
√

Zo × ZC

A

BC

G
en

er
at
or

Load

Figure 24 : QWT with complex load : graphical solution
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Using a QWT match a complex load

I Once the length of series line lx
has been chosen, the QWT is
then used to transform ZB or ZC
into Zo. Choosing point B will
require a transformer with a
characteristic impedance greater
than Zo and choosing point C will
result in a transformer with ZT
less than Zo.

I Whichever point is chosen, ZT is
computed using (??).

I If the QWT is being implemented
in microstrip medium, the lower
value of ZT is generally preferred
because low impedance lines (i.e.
thicker traces) are easier to
reproduce accurately.
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Figure 25 : QWT with complex load : graphical solution

© Poole-Darwazeh 2015 Lecture 10 - Distributed Element Matching Networks Slide59 of 74



Quarter-Wavelength Transformer (QWT)

Equation (38) implies:

(xL + t)(1− xLt)− r2L t = 0 (39)

Rearranging (39), and noting that |ZL|2 = r2L + x2
L , results in the following quadratic in t:

xLt2 − t(1− |ZL|2)− xL = 0 (40)

We can now determine t as follows :

t =
(1− |ZL|2)±

√
(1− |ZL|2)2 + 4x2

L

2xL
(41)

The two solutions embodied in (41) represent the two intersections of the constant
VSWR circle through ZL with the real axis. One of these intersections gives
Re(zin) < Zo and the other gives Re(zin) > Zo. With a given value of t, we determine
the electrical length of the line section, lx , from :

lx
λ

=
1
2π

tan−1(t)
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Quarter-Wavelength Transformer (QWT)

ZLZo Z1

Zin
λ/4 transformer

From the previous slide we have :

Zin =
Z2
1

ZL
(42)

We can therefore us a QWT as a matching network between a load, ZL, and a required
input impedance, Zin, provided that the QWT has a characteristic impedance given by :

Z1 =
√

ZLZin (43)

This implies that a real QWT can only be used to match Resistive loads, ZL.
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Bandwidth of Single Stub Matching Networks

The fractional bandwidth
for the previous single
stub matching example is
shown for open circuit
stubs in figure 26.
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Figure 26 : Single stub matching network bandwidth: open circuit
stubs
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Bandwidth of Single Stub Matching Networks

The fractional bandwidth
for the previous single
stub matching example is
shown for short circuit
stubs in figure 27.
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Figure 27 : Single stub matching network bandwidth: short circuit
stubs
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Bandwidth of Single Stub Matching Networks

In general, the single stub matching solution with the shortest combination of line and
stub lengths will provide the widest bandwidth [1]. This can be demonstrated, with
reference to example ?? in section ??, by considering an arbitrary value of |Γin|, say
0.2. At this value of reflection coefficient, the various fractional bandwidths of the single
stub matching network are shown in table 3.

Table 3 : Fractional bandwidth of a typical single stub matching network

Open circuit stub Short circuit stub
Solution 1 9% 19%
Solution 2 8% 6%
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Bandwidth of Double Stub Matching Networks

Figure 28 shows
fractional bandwidth for a
typical open circuit double
stub matching network.
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Figure 28 : Double stub matching network bandwidth: open circuit
stubs
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Bandwidth of Double Stub Matching Networks

Figure 29 shows
fractional bandwidth for a
typical short circuit double
stub matching network.
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Figure 29 : Double stub matching network bandwidth : short circuit
stubs
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Bandwidth of Double Stub Matching Networks

We can compare the fractional bandwidths of the double stub solutions of figure 28 and
figure 29 by adopting a similar approach to that taken with the single stub solutions,
only this time, because the bandwidth is narrower, we will choose a higher value of
|Γin| = 0.3. The results are shown in table 4.

Table 4 : Fractional bandwidth of a typical double stub matching network

Open circuit stubs Short circuit stubs
Solution 1 3% 4%
Solution 2 1% 2%
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QWT Bandwidth

A closed form expression for the fractional bandwidth of a single section transformer
has been derived[2] as follows :

∆f
fo

= 2− 4
π
cos−1

 Γm√
(1− Γ2

m)

2
√

ZLZo
|ZL − Zo|

 (44)

Where Γm is the maximum reflection coefficient that we can accept as defining a ’good’
match.

We can see from (44) that the fractional bandwidth of the QWT increases as ZL
becomes closer to Zo, as outlined above. For a value of |Γin| = 0.1, the fractional
bandwidth of the QWT shown in figure 30 with various loads is summarised in table 5.

Table 5 : Fractional bandwidth of a typical quarter wave transformer

Load Fractional Bandwidth
ZL = 150Ω or 16.67Ω 22%
ZL = 100Ω or 25Ω 36%
ZL = 75Ω or 37.5Ω 66%
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QWT Bandwidth

I The Quarter Wave
Transformer is an inherently
narrow band matching
network, since (by definition)
it is only exactly a quarter
wavelength at one frequency.

I It turns out, however, that the
closer RL is to characteristic
impedance Zo, the wider the
bandwidth of the quarter
wavelength transformer.
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Figure 30 : Quarter wave transformer bandwidth
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Quarter Wave Transformer design example

Design a Quarter wave transformer to match a load of 10Ω to a 50Ω transmission line.
Determine the fractional bandwidth of this matching network if we define the VSWR for
a good match to be less than 1.6.
Solution : We can match this real impedance using a QWT with a characteristic
impedance of :

ZT =
√

10× 50 = 22.36Ω

A VSWR of 1.6 corresponds to a reflection coefficient magnitude of :

Γm =
VSWR − 1
VSWR + 1

=
1.6− 1
1.6 + 1

= 0.231

The fractional bandwidth can now be computed from (44) as :

∆f
fo

=2− 4
π

cos−1
[

0.231√
(1− 0.2312)

2
√
10× 50
|10− 50|

]
∆f
fo

=0.169

The fractional bandwidth of this transformer is therefore 16.9%.
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Multi-Stage Quarter Wave Transformers

I There is a natural bandwidth limitation of quarter-wave transformers, because you
only get exactly a quarter wavelength at one frequency

I Lower frequencies see less than a quarter-wave, higher frequencies see more.
I In order to achieve matching over a broader bandwidth, we add multiple

quarter-wave transformers in a series, so that the impedance mismatch that each
transformer is correcting becomes less and less.

I The bandwidth limitation of the single quarter-wave section can be overcome by
using multiple sections in series, with impedances chosen to provide the desired
response (e.g. maximally flat, Tchebyscheff etc.)

I The improvement in bandwidth carries a cost of increased physical size, which
may be a problem in some circumstances.
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Example Multi-Stage Transformers

’2-quarter-wave’ transformer :

Z1 ZA ZB Z2

λ/4
λ/4

n=1
n=2

ZA = Z1

[
Z2
Z1

] 1
4

(45)

ZA = Z1

[
Z2
Z1

] 3
4

(46)

’3-quarter-wave’ transformer :

Zo Z1 Z2 Z3 Z4

λ/4
λ/4

λ/4

n=1
n=2

n=3

ZA = Z1

[
Z2
Z1

] 1
4

(47)

ZA = Z1

[
Z2
Z1

] 3
4

(48)
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