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Intended Learning Outcomes

I Knowledge
I Understand the most important sources of electrical noise, such as thermal noise, shot

noise and flicker noise, and their characteristics.
I Know the definition of noise factor and noise figure for a two-port network.
I Understand the relationship between noise factor and effective noise temperature.
I Understand the relationship between noise figure and source termination for a single

stage and multi-stage amplifiers.
I Understand the basic principles of noise figure measurement and transistor noise

characterisation.
I Skills

I Be able to design a single stage microwave transistor amplifier having the minimum
possible noise figure.

I Be able to design a single stage microwave transistor amplifier having a specified noise
figure and gain.

I Be able to calculate the overall noise figure of a receiver chain.
I Be able to design a single stage microwave transistor amplifier having the minimum

noise measure, and thereby design a multi-stage amplifier having the minimum possible
noise figure.

I Be able to design a single stage microwave transistor amplifier with a specified noise
measure and gain, and thereby design a multi-stage amplifier having a specified noise
figure.
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Thermal Noise

I The most common form of intrinsic electrical noise in circuits is thermal noise,
which is generated by the random thermal motion of electrons within any
conducting or semi-conducting material.

I This thermal motion would cease to exist if the material is ’properly frozen’, i.e.
taken down to absolute zero (0 kelvin). Thermal noise is also known as Johnson
noise after J.B. Johnson who first observed the phenomenon in 1927 [9].

The mean square value of thermal noise voltage and current in a resistor, R (in Ω), in a
bandwidth ∆f (in Hz) and at an absolute operating temperature To (in kelvin) are given,
respectively, by the two equations below :

|vnt |2 = 4kBToR∆f(in units of V2) (1)

|int |2 =
4kBTo∆f

R
(in units of A2) (2)

where kB is Boltzmann’s constant (= 1.3806488× 10−23 joules per kelvin).
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Thermal Noise
I |vnt |2 and |int |2 are equal to the variances of the Gaussian distributions that

describe the noise voltage and current, respectively.
I It is convenient for circuit designers to express noise in units of volts or amperes.

These are expressed as Root Mean Square (RMS) values.

The RMS voltage, vnt , and the corresponding current, int , due to thermal noise in a
resistance R (in Ω) may simply be obtained by taking the square roots of the quantities
in (1) and (2), giving :

vnt =
√

4kBToR∆f (3)

int =

√
4kBTo∆f

R
(4)

To find the thermal noise power generated by an arbitrary resistor R, we can apply one
or both of (3) and (4). We then have the noise power, Pnt , generated by the resistor R
as :

Pnt = vnt · int (5)

=
v2nt
R

= i2ntR (6)

= 4kBTo∆f (7)
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Thermal Noise

I One way of understanding equation (5) is to
think of Pnt as the power dissipated in the
noise generating resistor itself when it is
terminated by a short circuit.

I This power is directly proportional to the
bandwidth and the absolute temperature,
but is independent of the resistor value.

I What we are primarily interested in is the
amount of noise power that will be
transferred to an external circuit.

I According to the maximum power transfer
theorem, the maximum noise power will be
extracted from the resistor, R, when the
equivalent resistance of the external circuit
is also equal to R, as illustrated in figure 1.

The noise voltage across the external load
resistor in figure 1, is vn/2, where vn is defined by
(3). The maximum available noise power from R
is therefore given by:

Pnt (max) = kBTo∆f (8)

vn

R

R

Noise source External load

Figure 1 : Maximum noise power extraction from
a resistor R.
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Thermal Noise

I The load resistor in figure 1 is also a source of thermal noise, and that each one of
the two participating resistors generates and dissipates noise in both itself and in
the other resistor.

I This does not alter the validity of (8), since, as the two resistors are physically
separate entities, their noise voltages are not correlated and so do not add
constructively.

We can express the noise power in dBm as follows:

Pnt (dBm) = 10 log10(kBTo∆f × 1, 000) (9)

where the factor of 1,000 in (9) is present because dBm is a ratio of the power to 1mW.
We can separate out the bandwidth element of (9) from the constant elements as
follows:

Pnt (dBm) = 10 log10(kBTo × 1, 000) + 10 log10(∆f) (10)

If we take To to be room temperature (290 K), (10) can be written in a compact form as:

Pnt (dBm) ≈ −174 + 10 log10(∆f) (11)

If we take the bandwidth to be 1 Hz, (11) gives us the Thermal Noise Floor as -174
dBm at room temperature.
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Shot noise

I Shot noise in electronic devices arises from the discrete nature of electric current
and relates to the arrival of charge carriers at a particular place, i.e. when
electrons cross some type of physical ’gap’, such as a pn or Schottky junction.

I Unlike thermal noise, shot noise is characterised by the Poisson distribution[3],
which describes the occurrence of independent and discrete random events.

I When the number of events is sufficiently high, as in the case of the flow of
electrons in a circuit with ’normal’ operating currents, the Poisson distribution
resembles the Gaussian distribution.

I For most practical cases, therefore, we usually assume that the shot noise and
thermal noise have the same distribution.

I This makes our circuit analysis and design more straightforward. In other words,
we simply add the shot noise component to the thermal noise component.

I Shot noise, just like thermal noise, can be characterised as ’white noise’ due to its
flat power spectral density.
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Shot noise

As the shot noise has its physical origin in electrons crossing a junction, it is normally
expressed in terms of electron flow, in other words, current. The RMS value of the shot
noise current is given by[5] :

ins =
√

2Iq∆f (12)

where I is the DC current, q is the electron charge, and ∆f is the bandwidth in Hz.

In all active circuits where semiconductor devices are biased, shot noise exists and has
to be accounted for by designers.

We note from (12) that shot noise is not a function of temperature, unlike thermal noise.
We should also note that conductors and resistors do not exhibit shot noise because
there is no ’gap’ as such.
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Flicker noise

I In addition to thermal noise semiconductor devices also exhibit a particular type of noise
called flicker noise or 1/f noise, after its frequency characteristic which falls off steadily as
frequency increases from zero.

I Because of its spectral characteristics flicker noise is sometimes referred to as ’Pink’ noise (as
opposed to thermal and shot noise which have a ’white’ spectrum).

I Unlike other types of noise, 1/f noise is a non stationary random process[10], in other words
its statistics vary with time.

I The flicker noise corner frequency, fc , defines the boundary between flicker noise dominant
and thermal noise dominant regions in the frequency domain. In fact, 1/f noise has spectral
characteristics that can be described as comprising a number of 1/fα curves with various
cut-off frequencies depending upon the value of the integer α.

I The corner frequencies and the actual spectral density of 1/f noise depend on the type of
material used to construct a semiconductor device, the device geometry and the bias.

I Generally, both the 1/f noise spectral density and the corner frequency increase with bias
current. The corner frequencies range from tens of Hz to tens of kHz[1].
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Noise Factor

The noise factor of a two-port network is calculated as a simple ratio of input SNR to
output SNR, as follows:

F =
SNRin
SNRout

(13)

For any real world device or circuit in which internal noise will be generated as
described in the previous sections, the input SNR will never be less than the output
SNR. The noise factor, F , for such a device can therefore never be less than 1.

The noise factor is most often presented in the form of the Noise Figure, which is
simply the noise factor expressed in dB as follows:

FdB = 10 log10(F) = 10 log10
(

SNRin
SNRout

)
(14)
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Noise Temperature

I Since any changes in temperature will affect the noise power, the formulae in the
previous slides are valid at a specified operating temperature, To.

I We can therefore define something called the effective noise temperature of any
device or circuit as being the absolute temperature at which a perfect resistor, of
equal resistance to the device or circuit, would generate the same noise power as
that device or circuit at room temperature.

I We can also define the effective input noise temperature of an amplifier or other
two-port network as the source noise temperature that would result in the same
output noise power, when connected to an ideal ’noise-free’ network or amplifier,
as that of the actual network or amplifier connected to a noise-free source.

The relationship between noise factor and noise temperature Te of a device is as
follows:

F = 1 +
Te
To

(15)

Where To is the actual operating temperature (in kelvin).
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Noise figure vs Noise temperature

The relationship between noise figure in dB
and noise temperature is defined by:

F =

(
1 +

Te
To

)
(16)

Or in dB terms:

FdB = 10 log10
(
1 +

Te
To

)
(17)

One reason for using noise temperature as
a figure of merit is that it provides greater
resolution at very small values of noise
factor (where F ≈ 1). For this reason
extremely low noise amplifiers may be
characterised by their effective noise
temperature.
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Figure 2 : Noise Temperature versus Noise
Figure (dB)
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Representation of noise in active two-port networks
A noisy two-port can be represented by a
noise-free two-port with external noise
sources at the input and output, as shown
below:

in1 in2

i1

v1

i2

v2
[
Y11 Y12
Y21 Y22

]

Noise-free 2-port

Figure 3 : Y-parameter noise representation of
noisy two-port

This noisy two-port may be described in
terms of its Y -parameters as follows :

i1 = Y11v1 + Y12v2 + in1
i2 = Y21v1 + Y22v2 + in2

The analysis is simplified if we represent
the noisy two-port in terms of its ABCD
matrix, so that both noise sources may now
be located at the input port, as shown
below.

vn1

in1

i1

v1

i2

v2
[
A B
C D

]

Noise-free 2-port

Figure 4 : ABCD noise representation of noisy
two-port

The ABCD representation can be
described by the following set of equations:

i1 = AV2 + BI2 + in1
v1 = CV2 + DI2 + vn1

(18)
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Representation of noise in active two-port networks
The noise-free two-port of figure ?? has the same signal-to-noise ratio at its input and
output. Therefore, the noise figure of the overall two port can be derived by considering
the input noise network alone (vn1 and in1).

Consider the input noise network in figure ?? connected to a source of internal
admittance YS = GS + jBS and a noise current ins which is uncorrelated with vn1 or in1.
Given (??), we can replace the noise voltage source, ven1, with an equivalent current
source Ycorvn1, as shown in figure 5.

ins YS

vn1

iu Ycorvn1

Figure 5 : Input noise equivalent model

The mean square short circuit output current of this network is given by :

|intot |2 = |ins + iu + vn1(YS + Ycor)|2 (19)
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Representation of noise in active two-port networks

Since the components of the right hand side of equation (19) are uncorrelated with
each other, the mean-square value of intot is equal to the sum of the mean-square
values of the components. We can therefore rewrite equation (19) as:

|intot |2 = |ins|2 + |iu|2 + |en1|2|YS + Ycor |2 (20)

We defined the noise factor of a two-port network in (13). Another definition of the
Noise Factor is the ratio of the total output noise power per unit bandwidth to the total
input noise power per unit bandwidth[8]. Using this definition, the noise factor of the
circuit of figure ?? may be written as :

F =
|intot |2

|ins|2
(21)

Applying equation (20) this becomes:

F = 1 +
|iu|2

|ins|2
+
|en1|2

|ins|2
|YS + Ycor |2 (22)
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Representation of noise in active two-port networks

The various voltage and current components of equation (22) may all be defined in
terms of equivalent noise resistances and conductances as follows :

|ins|2 = 4kBToGS∆f (23)

|iu|2 = 4kBToGu∆f (24)

|en1|2 = 4kBToRn∆f (25)

Substituting these definitions (23) to (25) into (22) results in:

F = 1 +
Gu
GS

+
Rn
GS
|YS + Ycor |2 (26)

or

F = 1 +
Gu
GS

+
Rn
GS

[(GS + Gcor)
2 + (BS + Bcor)

2] (27)
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Representation of noise in active two-port networks

Substituting these definitions (23) to (25)
into (22) results in:

F = 1 +
Gu
GS

+
Rn
GS
|YS + Ycor |2 (28)

or

F = 1+
Gu
GS

+
Rn
GS

[(GS+Gcor)
2+(BS+Bcor)

2]

(29)
The noise factor of the two-port is therefore
an explicit function of the source
admittance and depends upon four
parameters, Gu,Rn,Gcor and Bcor .

BS

F

GS

F = f(GS,BS)

Fmin

Gon Bon

Yon

Figure 6 : Noise factor, F , as a function of YS
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Representation of noise in active two-port networks

By employing equation (??) this becomes:

F = Fmin +
Rn
GS

[(GS − Gon)2 + (BS − Bon)2] (30)

This equation is more often written in its equivalent form:

F = Fmin +
Rn
GS
|YS + Yon|2 (31)

Where Yon is the optimum source termination (Yon = Gon + jBon).
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Representation of noise in active two-port networks
In the microwave frequency range we are more accustomed to working with reflection
coefficients than with impedances or admittances. Equation (31) may be translated into
the source reflection coefficient plane by using the relationships:.

YS =
1
Zo

(1− ΓS)

(1 + ΓS)

Yon =
1
Zo

(1− Γon)

(1 + Γon)

(32)

This leads to the equation:

F = Fmin + 4rn
|ΓS − Γon|2

|1 + Γon|2(1− |ΓS|2)
(33)

Where rn is the normalised equivalent input noise resistance, which is defined as :

rn =
Rn
Zo

(34)

The four scalar parameters, Fmin, |Γon|, ∠Γon and Rn are known as the Noise
Parameters and are often specified in manufacturer’s data sheets for a given
microwave transistor, alongside the S-parameters.
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Single-stage low noise amplifier design

We can build on the two-port noise analysis of the previous slides to set out a design
methodology for low noise microwave transistor amplifiers.

We rely on the noise parameters that are usually provided by the device manufacturer,
but can be measured if necessary.

There are two real and one complex parameter we need for this purpose, being the
parameters used in equation (33), namely :

I The minimum noise figure : Fmin in dB.
I The equivalent noise resistance : Rn in Ω.
I The optimum source termination : Γon (which is dimensionless).

As a reminder, we will use the symbol Rn to represent the ohmic value of equivalent
noise resistance and the symbol rn to represent the normalised value.
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Circles of constant noise figure
I A graphical representation of the effect of variations in Γs on the noise factor of an

amplifier provides a means of assessing the "trade-off" between noise figure and
gain, when plotted on the same axes.

I It can be shown that loci of constant noise factor obtained from equation (33) are
circles in the source reflection coefficient plane[7].

I We will focus instead on the reflection coefficient based approach, which is more
widely used today.

We start by considering equation (33):

F = Fmin + 4rn
|ΓS − Γon|2

|1 + Γon|2(1− |ΓS|2)
(33)

Rearranging equation (33) above gives :

(F − Fmin)|1 + Γon|2

4rn
=
|ΓS − Γon|2

(1− |ΓS|2)
(35)

which can be rearranged as :

Ni(1− |ΓS|2) = |ΓS|2 + |Γon|2 − Γ∗
SΓon − ΓSΓ∗

on (36)
Where :

Ni =
(F − Fmin)|1 + Γon|2

4rn
(37)

© Poole-Darwazeh 2015 Lecture 14 - Low Noise Amplifier Design Slide25 of 67



Circles of constant noise figure

Rearranging equation (36) leads to :

|ΓS|2 − ΓS
Γ∗
on

(1 + Ni)
− Γ∗

S
Γon

(1 + Ni)
=

Ni − |Γon|2

(1 + Ni)
(38)

Equation (??) can be rearranged into the form of a circle in the Γs plane, that is to say,
it is of the form :

|ΓS − CSn| = γ2Sn (39)

Where the center is given by:

CSn =
Γon

1 + Ni
(40)

and the radius is given by:

γSn =

√
N2
i + Ni(1− |Γon|2)

1 + Ni
(41)
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Design Example 1 : Avago ATF-34143 HEMT

Problem : Draw constant noise figure circles for F = 1.4dB, for F = 2dB and F = 3dB
on the source plane for the Avago ATF-34143 Low Noise HEMT operating at 10GHz,
and hence, or otherwise, determine the lowest possible noise figure commensurate
with the maximum gain available from this device. The S-parameters and noise
parameters of the device with bias conditions VDS = 3V , IDS = 40mA are as follows :
S-parameters : [

S11 S12
S21 S22

]
=

[
0.760∠28 0.144∠− 84

1.647∠− 84 0.410∠23

]
Noise parameters :

Fmin = 1.22dB
Γon = 0.61∠− 39o

Rn = 25Ω
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Design Example 1 : Avago ATF-34143 HEMT

Solution : Firstly, we need to investigate the stability of the device, for which we will use
the Edwards Sinsky stability criteria defined by (??) and (??), i.e.:

µ1 =
1− |S11|2

|S22 −∆S∗
11|+ |S12S21|

=
0.4224
0.3134

= 1.1887

µ2 =
1− |S22|2

|S11 −∆S∗
22|+ |S12S21|

=
0.8319
0.8246

= 1.0435

Since both µ1 and µ2 are greater than 1 we conclude that the device is unconditionally
stable, so we are free to choose any terminating impedances lying within the |Γ| = 1
boundary of the source and load plane Smith Charts. Maximum available gain occurs
when the source and load are simultaneously conjugately matched.
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Design Example 1 : Avago ATF-34143 HEMT
The necessary terminating reflection coefficients are determined as follows :

Γms =C∗
1

B1 +
√

B2
1 − 4|C1|2

2|C1|2

 = 0.5601∠− 34o
[
1.1413 +

√
1.14132 − 4× 0.56012
2× 0.56012

]

=0.8233∠− 34o

Γml =C∗
2

B2 +
√

B2
2 − 4|C2|2

2|C2|2

 = 0.1182∠− 97o
[
0.3223 +

√
0.32232 − 4× 0.11822
2× 0.11822

]

=0.4364∠− 97o

Where :

B1 =1 + |S11|2 − |S22|2 − |∆|2 = 1.1413
C1 =S11 −∆S∗

22 = 0.5601∠34o

B2 =1− |S11|2 + |S22|2 − |∆|2 = 0.3223
C2 =S22 −∆S∗

22 = 0.1182∠97o
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Design Example 1 : Avago ATF-34143 HEMT

With the above conjugate terminations the Maximum Available Gain (MAG) of the
device, from (??) is:

MAG =
|S21|
|S12|

[
K −

√
K2 − 1

]
=

1.647
0.144

[
1.1016−

√
1.10162 − 1

]

=7.3151 = 8.6dB

Where K is the Rollett stability factor.
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Design Example 1 : Avago ATF-34143

In order to draw the constant noise figure circles for F = 1.4dB, F = 2dB and F = 3dB
on the ΓS plane, the first step is to calculate the parameter Ni , as defined by (37) for the
various values of noise figure. For example, for F = 1.4dB we have :

Ni =
(F − Fmin)|1 + Γon|2

4rn

=
(10(1.4/10) − 10(1.22/10))|1 + 0.61∠− 39|2

4× 25/50

=
0.0560× 2.3202

2
= 0.0650

Similarly, we calculate Ni for F = 2dB and F = 3dB to be 0.3023 and 0.7783
respectively.
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Design Example 1 : Avago ATF-34143 HEMT

Employing (40) and (41) we can now calculate the centres and radii of the three noise
figure circles as follows:

1.4dB noise figure circle :

CSn1.4 =
0.61∠− 39
1 + 0.0650

= 0.5730∠− 39

γSn1.4 =

√
(0.0042 + 0.0650× 0.6279)

1 + 0.0650
= 0.1993

2dB noise figure circle :

CSn2.0 =
0.61∠− 39
1 + 0.3023

= 0.4684∠− 39

γSn2.0 =

√
(0.0914 + 0.3023× 0.6279)

1 + 0.3023
= 0.4072

3dB noise figure circle :

CSn3.0 =
0.61∠− 39
1 + 0.7783

= 0.3430∠− 39

γSn3.0 =

√
(0.6058 + 0.7783× 0.6279)

1 + 0.7783
= 0.5883
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Design Example 1 : Avago ATF-34143 HEMT

I The noise figure circles are now
plotted on the Smith chart in
figure 7, together with the
optimum source termination , Γon,
which is basically the centre of the
noise figure circle of zero radius
(i.e. when we set F = Fmin in (41)
we get γSn = 0).

I We have also plotted the optimum
source termination for maximum
available gain, Γms, on figure 7
and we can see that this lies
between the F = 1.4dB and
F = 2dB noise figure circles,
indicating that the noise figure of
the device, when simultaneously
conjugately matched for
maximum gain, will have a noise
figure between 1.4dB and 2dB.
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Figure 7 : Constant noise figure circles for Avago
ATF-34143 at 10GHz (VDS = 3V , IDS = 40mA)
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Design Example 1 : Avago ATF-34143 HEMT

We can calculate the exact noise figure of the simultaneously conjugately matched
device by employing equation (33). If the input port is matched with Γms, the noise
figure will be:

F =Fmin + 4rn
|Γms − Γon|2

|1 + Γon|2(1− |Γms|2)

=1.3243 + 4× 25
50
×

|0.8233∠− 34o − 0.61∠− 39o|2

|1 + 0.61∠− 39o|2(1− |0.8233∠− 34o|2)

=1.3243 + 2.0× 0.0489
2.3202× 0.3222

=1.3243 + 2.0× 0.0654 = 1.4551

which is equal to 1.62dB.

Which corresponds with our assessment based on the noise figure circles in figure 7.
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Design Example 2 : BFU730F SeGe BJT

Problem : You are required to design an 18GHz low noise amplifier having a gain of at
least 10dB and a noise figure of less than 2dB, using the BFU730F Silicon-Germainum
BJT from NXP. The S-parameters and noise parameters of the device with bias
conditions VC = 2.0V , IC = 10mA are as follows :
S-parameters : [

S11 S12
S21 S22

]
=

[
0.691∠63o 0.178∠− 20o

2.108∠− 55o 0.218∠97o
]

Noise parameters :

Fmin = 1.79dB
Γon = 0.667∠307o

Rn = 28.6Ω
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Design Example 2 : BFU730F SeGe BJT

Solution : Firstly, we need to investigate the stability of the device, for which we will use
the Edwards Sinsky stability criteria, i.e.:

µ1 =
1− |S11|2

|S22 −∆S∗
11|+ |S12S21|

=
0.4224
0.3134

= 0.885

µ2 =
1− |S22|2

|S11 −∆S∗
22|+ |S12S21|

=
0.8319
0.8246

= 0.962

Since both µ1 and µ2 are less than 1 we conclude that the device is potentially
unstable. We therefore need to plot stability circles in order to determine the acceptable
range of source terminations.
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Design Example 2 : BFU730F SeGe BJT

Since we need to focus on matching the input port to achieve the desired noise
specification, we firstly use equations (??) and (??) to calculate the centre and radius
of the source plane stability circle, as follows:

CSS =
C∗
1

|S11|2 − |∆|2
=

0.6149∠− 62o

0.2492
= 2.4680∠− 69o

rSS =

∣∣∣∣ |S12S21|
|S11|2 − |∆|2

∣∣∣∣ =
0.3752
0.2492

= 1.50598
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Design Example 2 : BFU730F SeGe BJT

Once again, we calculate the parameter Ni , as defined by (37), for various values of
noise figure circle (say, F = 2dB, F = 3dB and F = 5dB).

We then calculate the respective noise circle centres and radii using (40) and (41). The
resulting calculations are summarised in the following table :

F (dB) Ni |CSn| ∠CSn γSn
2 0.0735 0.6213 −53o 0.2002
3 0.4766 0.4517 −53o 0.4749
5 1.6231 0.2543 −53o 0.7168

The above noise figure circles are plotted on the source plane Smith chart, together
with the stability circle as shown in figure 8.
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Design Example 2 : BFU730F SeGe BJT
We now check The gain available from the device when terminated for minimum noise
figure, i.e. when the source termination is Γon = 0.667∠307o. For this we use equation
(??) for available power gain :

GA =
|S21|2(1− |Γon|2)

|1− S11Γon|2 − |S22 −∆Γon|2

=
2.1082 × (1− 0.6672)

|1− 0.691∠63o × 0.667∠307o|2 − |0.218∠97o − 0.4778∠120o × 0.667∠307o|2

=
1.1702
0.2758

= 4.24

which is equal to around 6.3dB. If we set the source termination to obtain minimum
noise figure, therefore, we will not be able to achieve the required gain specification. In
order to determine a range of source terminations that can achieve the lowest noise
figure consistent with 10 dB of gain we should draw the 10 dB constant available gain
circle on the source plane and see where this circle intersects with the noise figure
circles. The available gain circle are calculated by applying (??) and (??). Firstly, we
need to calculate the normalised gain parameter ga as defined by (??) :

ga =
GA
|S21|2

=
10(10/10)

2.1082
= 2.250
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Design Example 2 : BFU730F SeGe BJT

We now calculate the centres and radii of the 10 dB constant gain circle on the source
reflection coefficient plane, as follows:

CgS =
gaC∗

1
1 + gaD1

=
2.250× 0.6149∠− 69.2o

1 + 2.250× 0.2492
=

1.384∠− 69.2o

1.561
= 0.8860∠− 69.2o

γgS =

√
1− 2K |S12S21|ga + |S12S21|2g2a

1 + gaD1
=

0.361
1.561

= 0.231

Where :

∆ = S11S22 − S12S21 = 0.478∠120o

K =
1− |S11|2 − |S22|2 + |∆|2

2|S21S12|
= 0.9372

C1 =S11 −∆S∗
22 = 0.6149∠69.2o

D1 =(|S11|2 − |∆|2) = 0.2492
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Design Example 2 : BFU730F SeGe BJT

We can see from figure 8
that there is a region where
the 10dB constant gain circle
overlaps the F = 2dB
constant noise figure circle.
Any source termination lying
within this region will have a
gain greater than 10dB and a
noise figure less than 2dB.

We therefore choose a
source termination of
ΓS = 0.74∠ − 62o as
indicated in figure 8, and we
can be confident that this
source termination will result
in F < 2dB and GA > 10dB.
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Figure 8 : Constant noise figure circles, Γon and stability and gain
circles on the source plane for the NXP BFU730F at 18GHz
(VC = 2.0V , IC = 10mA)
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Design Example 2 : BFU730F SeGe BJT

With the chosen source termination of ΓS = 0.74∠− 62o, the output reflection
coefficient of the transistor can be calculated using (??), as follows:

Γout = S22 +
S12S21ΓS
1− S11ΓS

= 0.218∠97o +
0.178∠− 20o × 2.108∠− 55o × 0.74∠− 62o

1− 0.691∠63o × 0.74∠− 62o

= 0.218∠97o +
0.2775∠− 137o

0.4892∠− 1o
= 0.4694∠− 157.7o
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Design Example 2 : BFU730F SeGe BJT

We now need to check whether the required value of load termination, set by ΓL = Γ∗
out

is within the load plane stable region. The centre and radius of the load plane stability
circle are calculated using (??) and (??) as follows:

CSL =
C∗
2

|S22|2 − |∆|2
=

0.2152∠− 164o

−0.1808
= 1.1903∠− 16.3o

rSL =

∣∣∣∣ |S12S21|
|S22|2 − |∆|2

∣∣∣∣ =
0.3752
0.1808

= 2.0753

Where : C2 = S22 −∆S∗
11 = 0.2152∠− 164o

© Poole-Darwazeh 2015 Lecture 14 - Low Noise Amplifier Design Slide43 of 67



Design Example 2 : BFU730F SeGe BJT

I The load plane stability circle is plotted
in figure 9 together with
ΓL = 0.4694∠157.7o.

I Since the load plane stability circle
encloses the origin, the stable region
is represented by the interior the circle.
This means that the stable region
encompasses most of the load plane
Smith Chart except for a small sliver
on the left hand side, as shown in
figure 9.

I Our chosen value of ΓL is therefore
comfortably inside the stable region of
the load plane.
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Figure 9 : Load plane stability circles for the NXP
BFU730F at 18GHz (VC = 2.0V , IC = 10mA)
with designated input match
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Noise factor of passive two-ports

By definition, a passive two-port has a gain, G, that is less than unity. Passive circuits
are therefore usually characterised by their attenuation, which is defined by :

A =
1
G

(42)

The equivalent noise temperature of a passive two-port having an attenuation, A, and
at operating temperature, To, can be shown to be[2]:

Te = (A− 1)To (43)

Thus, we can write the output noise temperature of such a passive two-port as:

Tout = G(Tin + Te) =
(Tin + Te)

A
=

Tin
A

+
(A− 1)To

A
(44)

Which reduces to:

Tout =
Tin
A
−

To
A

+ To (45)
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Noise factor of passive two-ports

The meaning of (45) is as follows:
I as the attenuation, A, approaches unity (i.e. the lossless case), we find that Tout

approaches Tin. In other words the noise passes through a lossless device
unaltered, and the device will generate no internal noise of its own. This makes
sense from a physical point of view, since no loss means no internal resistive
elements inside the two-port to generate thermal noise.

I Let us now consider the case where the attenuation, A, becomes very large. In
this case the input noise is completely absorbed by the two-port.

I The noise at the device output consists of noise that is entirely generated inside
the two-port. The output noise temperature will therefore become Tout = To i.e.
equal to the physical temperature of the device.

We can now determine the noise factor of a passive two-port by combining (16) on
page 14 and (43) to give:

F = 1 +
(A− 1)To

To
= 1 + (A− 1) = A (46)

In other words, for any passive two-port device, the noise factor, F , is equal to the
attenuation of the device, A.
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Multi-stage low noise amplifier design

I We have seen that a required gain and bandwidth can be obtained by cascading several
single stages. In the context of this chapter, cascading stages in this way raises the question
of the relationship between the noise factor of a multi-stage amplifier and the noise factors of
the individual stages.

I One might intuitively expect that a minimum noise figure multi-stage amplifier could be
constructed by simply cascading a number of individual stages each optimised for minimum
noise factor. It turns out, however, that this approach does not result in the lowest overall noise
figure for the cascade, due to the trade-off between noise factor and gain inherent in single
stage amplifier design, as outlined in the previous sections.

I Figure 10 illustrates a cascade of single stage amplifiers, with the nth stage having a noise
factor Fn and available gain Gn.

F1,G1 F2,G2 F3,G3 Fn,Gn

Figure 10 : Cascaded amplifiers
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Multi-stage low noise amplifier design
It turns out that the overall noise factor of the multi-stage amplifier in figure 10 depends
not only on the noise factor of the individual stages but also on the gain of all but the
first stage. This is embodied in the so called Friis noise formula which is named after its
originator, Harald Friis[6], and can be stated as follows:

F = F1 +
F2 − 1
G1

+
F3 − 1
G1G2

+ . . .
Fn − 1

G1G2G3 . . .Gn−1
(47)

Where :

F = noise factor of the cascade

Fn = noise factor of the nth stage

Gn = gain of the nth stage

We can deduce the following by studying equation (47):

(i) The noise factor of the first stage is much more important than the noise factors of
subsequent stages, as these are divided by the gain of the preceding stages. This
suggests that the first stage noise factor should be made as small as possible.

(ii) In order to make subsequent stage noise factors insignificant, the first stage gain
should be as high as possible.
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Multi-stage low noise amplifier design

Consider the case of two stages that are to be cascaded. Let their noise figures be F1 and F2 and
their available gains be Ga1 and Ga2. There are two possible arrangements as illustrated in figure
11.

F1,Ga1 F2,Ga2

(a)

F2,Ga2 F1,Ga1

(b)

Figure 11 : Two ways of cascading two amplifiers

If stage 1 is placed first, as in figure 11(a), the overall noise factor of the cascade, from equation
(47), will be:

F12 = F1 +
F2 − 1
Ga1

(48)

On the other hand, if stage 2 is placed first, as in figure 11(b), the overall noise factor of the
cascade, from equation (47) will be:

F21 = F2 +
F1 − 1
Ga2

(49)
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Multi-stage low noise amplifier design : Noise Measure
In general, one of these possibilities will result in a lower overall noise figure than the
other. Suppose that putting stage 1 first results in the lowest overall noise figure, that is:

F12 < F21 (50)

Employing equations (48) and (49) results in:

F1 +
F2 − 1
Ga1

< F2 +
F1 − 1
Ga2

(51)

Equation (51) can be rearranged to give:

F1 − 1(
1− 1

Ga1

) <
F2 − 1(
1− 1

Ga2

) (52)

Therefore the lowest overall noise figure results from ensuring that the first stage has
the lowest value, not of F , but of the quantity ’M’ which is defined by :

M =
F − 1(
1− 1

Ga

) (53)

The quantity M, which we call the Noise Measure, is therefore a more meaningful
measure of stage noise performance than noise figure when stages are to be
cascaded.
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Multi-stage low noise amplifier design : Noise Measure

If several stages with the same noise measure are cascaded then the noise measure of
the cascade will be the same as that of each stage. For such a cascade the overall
noise figure is given by [12]:

F = M + 1 (54)

We can therefore conclude that, in order to build a multi-stage amplifier with the
minimum overall noise factor, the first stage, and possibly subsequent stages, should
be designed for minimum value of noise measure (i.e. Mmin). We know that noise
factor is a function of the source termination alone, so we deduce that the minimum
noise measure can be obtained at a particular value of source termination.

We can determine the value of Mmin and the source termination required to realise it,
which we shall refer to as Yom (admittance) or Γom (reflection coefficient) by
differentiating equation (53) with respect to the complex source termination (YS, ΓS)
and setting the derivatives equal to zero. Alternatively, we can derive circles of constant
noise measure in the complex source plane and then consider the circle of zero radius.
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Circles of Constant Noise Measure
As is the case when designing to meet a specific noise factor specification, as covered
in section ??, a graphical representation of the effect of variations in Γs on the noise
measure of an amplifier is a useful design aid.

We will proceed to derive a set of equations for constant noise measure circles based
on equation (53). We will employ the available gain equation (??) on page ??, i.e.:

GA =
|S21|2(1− |ΓS|2)

|1− S11ΓS|2 − |S22 −∆ΓS|2
(??)

Substituting equation (??) and equation (33), which are both functions only of ΓS, into
(53) and we have:

M =

(Fmin − 1) + 4rn
|ΓS − Γon|2

|1 + Γon|2(1− |ΓS|2)(
1− |1− S11ΓS|2 − |S22 −∆ΓS|2

|S21|2(1− |ΓS|2)

) (55)

Which can be rearranged as:

M =
|S21|2

|1 + Γon|2
·
|1 + Γon|2(1− |ΓS|2)(Fmin − 1) + 4rn|ΓS − Γon|2

|S21|2(1− |ΓS|2)− |1− S11ΓS|2 + |S22 −∆ΓS|2
(56)
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Circles of Constant Noise Measure
Expanding out (56) and collecting ΓS terms gives:

|ΓS|2[M|1 + Γon|2(|∆|2 − |S21|2 − |S11|2)− |S21|2(4rn − |1 + Γon|2(Fmin − 1))]+

ΓS(M|1 + Γon|2C1 + 4rn|S21|2Γ∗
on) + Γ∗

S(M|1 + Γon|2C∗
1 + 4rn|S21|2Γon) =

|S21|2[|1 + Γon|2(Fmin − 1) + 4rn|Γon|2]−M|1 + Γon|2(|S22|2 + |S21|2 − 1)
(57)

Where C1 = S11 − S∗
22∆.

Equation (57) can be rearranged to give:

|ΓS|2 + ΓS

[
M|1 + Γon|2C1 + 4rn|S21|2Γ∗

on
M|1 + Γon|2(|∆|2 − |S21|2 − |S11|2)− |S21|2(4rn − |1 + Γon|2(Fmin − 1))

]
+

Γ∗
S

[
M|1 + Γon|2C∗

1 + 4rn|S21|2Γon

M|1 + Γon|2(|∆|2 − |S21|2 − |S11|2)− |S21|2(4rn − |1 + Γon|2(Fmin − 1))

]
=[

|S21|2[|1 + Γon|2(Fmin − 1) + 4rn|Γon|2]−M|1 + Γon|2(|S22|2 + |S21|2 − 1)

M|1 + Γon|2(|∆|2 − |S21|2 − |S11|2)− |S21|2(4rn − |1 + Γon|2(Fmin − 1))

]

(58)
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Circles of Constant Noise Measure

Equation (58) is in the form:

|ΓS|2 + |CSm|2 − Γ∗
SCSm − ΓSC∗

Sm = γ2m (59)

which describes a circle in the ΓS plane with centre at CSm and radius γSm. From (58)
we can see that the center of the constant M circle on the ΓS plane is located at:

CSm =
M|1 + Γon|2C∗

1 + 4rn|S21|2Γon

M|1 + Γon|2(|S21|2 + |S11|2 − |∆|2)− |S21|2(|1 + Γon|2(Fmin − 1)− 4rn)
(60)

and the radius are given by:

γSm =√
M|1 + Γon|2(1− |S22|2 − |S21|2) + |S21|2[|1 + Γon|2(Fmin − 1) + 4rn|Γon|2]

M|1 + Γon|2(|∆|2 − |S21|2 − |S11|2) + |S21|2(|1 + Γon|2(Fmin − 1)− 4rn)
+ |CSm |2

(61)
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Circles of Constant Noise Measure

We can determine the value of the minimum noise measure obtainable with a given
device by considering the noise measure circle of zero radius. This means finding a
value of M that makes γSm in (61) equal to zero. This can be done by trial and error.

The source reflection coefficient which gives rise to Mmin is the centre of the Mmin noise
measure circle. Once the value of Mmin has been determined, the value of Γom can
therefore be determined from equation (60) as:

Γom =
Mmin|1 + Γon|2C∗

1 + 4rn|S21|2Γon

Mmin|1 + Γon|2(|S21|2 + |S11|2 − |∆|2)− |S21|2(|1 + Γon|2(Fmin − 1)− 4rn)
(62)

With the input port of the transistor terminated in Γom, we can calculate the output
reflection coefficient looking into the output port of the transistor by employing equation
(??), i.e.:

Γout = S22 +
S12S21Γom
1− S11Γom

(63)
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Design Example 3 : Constant Noise Measure Circles

Problem : Design a single stage amplifier for minimum noise measure using a
NE71083 GaAs MESFET at a center frequency of 10GHz and bias conditions
Vds = 3.0V , ld = 8mA. The S-parameters of the transistor in the common source
configuration were measured, with a 50Ω reference impedance, to be as follows:[

S11 S12
S21 S22

]
=

[
0.724∠46o 0.716∠− 47o

1.303∠− 10o 0.616∠64o
]

(64)

The following noise parameters were supplied by the manufacturer of the FET:
Fmin = 1.7dB
Γon = 0.620∠148o
rn = 12Ω
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Design Example 3 : Constant Noise Measure Circles

Solution :
The stability of the device is first evaluated using the Edwards Sinsky stability criteria[4]
of (??) and (??), i.e.:

µ1 =
1− |S11|2

|S22 −∆S∗
11|+ |S12S21|

=
0.4758
1.3283

= 0.358 (65)

µ2 =
1− |S22|2

|S11 −∆S∗
22|+ |S12S21|

=
0.6205
1.1031

= 0.563 (66)

Since both µ1 and µ2 are less than unity we conclude that the device is potentially
unstable. We therefore need to draw a source plane stability circle to see whether we
which source terminations we can use.
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Design Example 3 : Constant Noise Measure Circles

We calculate the centre and radius of the source plane stability circle using equations
(??) and (??) as follows :

CSS =
C∗
1

|S11|2 − |∆|2
=

0.1702∠85o

−1.3559
= 0.126∠− 94o

rSS =
|S12S21|∣∣|S11|2 − |∆|2

∣∣ =
0.9329
1.3559

= 0.688

Where : C1 = S11 −∆S∗
22 = 0.1702∠− 85o

By determining the constant noise measure circle of zero radius the minimum noise
measure obtainable with this device was found to be Mmin = 0.435. Equation (62)
yielded the value of the associated source reflection coefficient, Γom, to be
0.729∠146.7o.
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Design Example 3 : Constant Noise Measure Circles

I Since the stability circle
encompasses the origin the stable
region is represented by the
interior of the stability circle.

I Figure ?? shows that Γom lies
outside the stable region in the
source reflection coefficient plane.
It is therefore not possible to
realise a stable amplifier stage
having the theoretical minimum
noise measure of Mmin = 0.435.

I From figure ?? we can see that
the M = 0.5 circle just overlaps
the source plane stability circle,
allowing a small range of ΓS
values that will result in a stable
amplifier with a value of M ≤ 0.5.
We therefore choose a source
termination ΓS = 0.610∠148
which lies approximately in the
centre of this overlapping region,
as shown in figure ??.
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Noise figure measurement
The Y-factor method involves applying the output of a noise source to the input of the DUT and
making noise power measurements at the output of the DUT[11]. A conceptual block diagram of a
typical noise figure meter is shown in figure 12.

The noise source in figure 12 is powered on and off under the control of a microprocessor inside the
instrument. The output signal of the DUT is filtered, downconverted (as necessary, depending on
the frequency of operation) and the resulting RMS power level measured and digitised. Each time
the noise source is turned on or off the noise power at the output of the of the DUT is thus
measured and recorded in the memory of the instrument. The microprocessor carries out the noise
figure calculations using the measured data and the equations we will introduce in this section.

A

D

VCO

Noise
source DUT

Band
Pass
Filter

Mixer Amplifier
Variable

Attenuator

Band
Pass
Filter

Microprocessor and display

Figure 12 : Noise figure meter simplified block diagram
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Noise figure measurement
The noise source in figure 12 can have two levels of noise output power corresponding
to ’cold’ and ’hot’ noise temperatures (Tc and Th) respectively. In simple terms, these
’hot’ and ’cold’ temperatures correspond to the noise source having its supply switched
on and off[16, 13].
Assuming the DUT is an amplifier, we can define Tc and Th in terms of the
corresponding output noise powers, N1 and N2, of the amplifier in figure 13, i.e.:

N1 = kG∆f(Tc + Ta) (67)
and

N2 = kG∆f(Th + Ta) (68)
Where G is the numerical power gain of the amplifier and Ta is the effective noise
temperature of the amplifier.

N1,N2

Tc,

Th

G,Na

Noise

Power

Meter

Noise source

Figure 13 : Amplifier noise model

© Poole-Darwazeh 2015 Lecture 14 - Low Noise Amplifier Design Slide62 of 67



Noise figure measurement

I If we measure two noise powers, N1 and N2, at
noise temperatures Tc and Th and plot them on
a graph we will get the straight line shown in
figure 14.

I The slope of the line is the gain bandwidth
product of the amplifier scaled by kB (i.e.
kBG∆f ).

I The line intercepts the noise power axis at a
value Na, which corresponds to the equivalent
noise power of the amplifier under test, referred
to its input.

N2

N1

Tcold Thot

Na

Slope =

kBG∆f

Source

Noise
Temperature

Noise
power

Figure 14 : Effective source temperature versus output
noise power
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Noise figure measurement

The so-called ’Y-Factor’ is defined as the ratio of ’hot’ to ’cold’ measured noise powers,
as follows[15]:

Y =
N2
N1

(69)

From (67) and (68) we can write :

Y =
Th + Ta
Tc + Ta

(70)

From (70) we can write Ta in terms of the Y-factor as follows[11]:

Ta =
Th − YTc
Y − 1

(71)
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Noise figure measurement

The noise factor of the amplifier is related to the effective noise temperature by (15), so
we can relate Ta to the system operating temperature as follows :

F =
Ta + To

To
(72)

Combining (71) and (72) we get the noise factor of the amplifier in terms of the Y-factor
and the temperatures, To, Tc and Th as follows[2]:

F =
(Th/To − 1)− (Tc/To − 1)

Y − 1
(73)

Note that (73) is independent of the measurement bandwidth, that has been cancelled
in the calculation of the Y factor in (70). This is one of the advantages of the Y factor
technique. The assumption is often made that Tc = To, in which case 73 reduces to :

F =
(Th/To − 1)

Y − 1
(74)
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Noise figure measurement

Noise sources are usually specified in terms of the Excess Noise Ratio (ENR) which is
defined as the power level difference between hot and cold states, referenced to the
thermal equilibrium noise power at the standard operating temperature, To. ENR is
therefore defined in relation to Th,Tc and To as :

ENR = 10 log10
(
Th − Tc

To

)
(75)

Again, the assumption is often made that Tc = To, in which case (75) becomes :

ENR(dB) = 10 log10
(
Th
To
− 1
)

(76)

Considering (74) and (76) we can now write the formula for calculating the noise figure
of the DUT, in dB, in terms of the measured Y-factor and the ENR of the source, as
follows :

F(dB) = ENR(dB)− 10 log10(Y − 1) (77)
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