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Intended Learning Outcomes

I Knowledge
I Understand the use of three-port representation for microwave transistors in the design

of feedback circuits.
I Understand the power of feedback mappings in circuit design, the different

classifications and how to apply them.
I Understand and be able to interpret reverse feedback mappings.

I Skills
I Be able to calculate the shunt and series feedback three-port S-parameters from

measured two-port S-parameters.
I Be able to calculate two-port S-parameters for common base/gate and common

collector/drain configurations, given the common emitter/source two-port S-parameters
for a device (configuration conversion).

I Be able to calculate the two-port S-parameters of a transistor with arbitrary shunt and
series feedback.

I Be able to construct and interpret feedback mappings and reverse feedback mappings.
I Be able to determine the optimum reactive feedback termination required to generate

negative resistance in a given transistor.
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Three-port immittance parameters

Let us begin with an immittance parameter
approach, by considering a transistor as
being a floating three-port with all three
terminals independently referenced to
ground, as shown in figure 1. We can
characterise the device in terms of a
three-port Y -matrix, referred to as the
Indefinite Admittance Matrix or ’IAM’[3] and
defined as:

 i1
i2
i3

 =

Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

 v1
v2
v3


(1)

v1 v3

v2

i1 i3

i2

Three Terminal

Active Device

(Transistor)

Figure 1 : Indefinite admittance matrix definition
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Three-port S-parameters
For the three-port network of figure 2 we can write:

b1 = s11a1 + s12a2 + s13a3

b2 = s21a1 + s22a2 + s23a3

b3 = s31a1 + s32a2 + s33a3


(2)

Where ai and bi are the scattering power wave variables.
Note: upper case Sij is used to represent the S-parameters of a two-port. Lower case
sij will be used to represent the S-parameters of networks with three or more ports.

a1

b1

a2

b2

a3 b3

three-port

Network

[s]

Figure 2 : Three-port network with power waves
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Feedback Topologies

Zo

Zo

Zo

(a) Series feedback topology

Y o

Yo

Y
o

(b) Shunt feedback topology

Figure 3 : Generic Feedback Topologies
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3-port S-parameters

I Feedback design requires that the
active device is represented as a
3-port network, characterised by a set
of 3-port S-parameters

I The 3-port S-parameters can be
directly measured using special test
jigs, or, more commonly calculated
from the measured 2-port
S-parameters

I By convention, port 3 is the port to
which the feedback termination will be
applied.

3-port network

 b1
b2
b3

 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 a1
a2
a3


(3)
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3-port with feedback

I The two-port comprised of a three port plus feedback termination attached to port
3 is referred to as the reduced two-port.

I The two-port S-parameters of the reduced two-port in figure ?? can be expressed
in terms of the three-port S-parameters, sij , and a third port termination, Γ3, as
follows[2]:

S′ij = sij +
si3s3jΓ3
1− s33Γ3

(4)

3-port network

Γ3
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Classification of three-port S-parameters

Port 1
Port 2

Port 3

(a)

Γ3

Port 1 Port 2

(b)

Port 1
Port 2

(c)

Port 1
Port 2

Port 3

(d)

Γ3

Port 1
Port 2

(e)

Figure 4 : Design flow for series and shunt feedback starting with two-port CE S-parameters
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Series feedback three-port S-parameters

Consider the case of the series feedback three-port shown in figure 4(a) (previous
slide). The three-port S-matrix for this network can be written as: b1

b2
b3

 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 a1
a2
a3

 (5)

Bodway showed that the sum of any row or column of this matrix is unity, i.e.[2]:

3∑
j=1

sij =
3∑

i=1
sij = 1 (6)
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Series feedback three-port S-parameter derivation

Figure 5 shows the two-port of figure 4(b) redrawn in order to illustrate the fact that this
two-port can be considered as the measured common source transistor two-port
connected in series with a passive two-port, comprising a shunt matched termination
Zo (i.e. Γ3 = 0).

Zo

Port 1
Port 2

Port 3

(a)

Zo

Port 1 Port 2

[Z ]

[Z ′]

(b)

Figure 5 : Series feedback circuit analysis
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Series feedback three-port S-parameter derivation

The transistor in figure 5(b) can be represented by its normalised two-port impedance
matrix. If we are starting with measured two-port S-parameters then we need to
convert them to z-parameters.

[z] =

[
z11 z12
z21 z22

]
(7)

The normalised impedance matrix of the lower two-port in figure 5(b), consisting of a
shunt matched termination, Zo, is given by:

[
z′
]

=

[
1 1
1 1

]
(8)

Since these two two-port networks are in series, the overall normalised impedance
matrix is the sum of the two z-matrices in (7) and (8), i.e.:

[zT ] =

[
(z11 + 1) (z12 + 1)
(z21 + 1) (z22 + 1)

]
(9)
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Series feedback three-port S-parameter derivation

The S-matrix of the complete two-port of figure 5 can then be found by transformation
of equation (9) back into the S-domain, and the remaining five three-port S-parameters
can be found by application of Bodway’s relationship (6):

s13 = 1− s11 − s12
s31 = 1− s11 − s21
s23 = 1− s21 − s22
s32 = 1− s12 − s22
s33 = 1− s31 − s32


(10)
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Shunt feedback three-port S-parameter derivation

The shunt feedback three-port shown in figure 6(a) does not have the same three-port
S-matrix as in the series feedback case of figure 5(a), so Bodway’s relationship (6)
does not apply in this case.

Zo

Port 1 Port 2

Port 3

(a)

Zo

Port 1 Port 2[Y ]

[Y ′]

(b)

Figure 6 : Shunt feedback circuit analysis
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Shunt feedback three-port S-parameter derivation

The two-port of figure 6(b) can be considered as a passive two-port, comprising a
series matched admittance, Yo = 1/Zo, in parallel with the common emitter transistor,
measured as a two-port. The transistor can be represented by its normalised common
source admittance matrix by employing the transformations in Appendix ??, namely:

[y] =

[
y11 y12
y21 y22

]
(11)

The normalised admittance matrix of the upper two-port in figure 6(b), consisting of a
shunt matched termination is given by:

[
y′
]

=

[
1 −1
−1 1

]
(12)

Since these two two-port networks are in parallel, the overall normalised admittance
matrix is given by the sum of the two y-matrices in equations (11) and (12), as follows:

[yT ] =

[
(y11 + 1) (y12 − 1)
(y21 − 1) (y22 + 1)

]
(13)

The S-matrix for the two-port of figure 6(b) can then be found by converting (13) back
into the S-domain. The remaining five three-port S-parameters can be found by
application of the equations (14).
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Shunt feedback three-port S-parameter derivation

In the shunt feedback case the sum of each row or column of the shunt three-port
S-matrix no longer equals unity, but Bodway has provided the following relationships
between the three-port S-parameters for the shunt feedback case:

s13 = 1 + s11 − s12
s31 = 1− s21 + s11
s23 = s21 − s22 − 1
s32 = s12 − s22 − 1
s33 = s31 − s32 − 1


(14)

As in the series feedback case, if any four of the three-port S-parameters are known
then the remaining five can be determined from the relationships (14) above. The
measurement of the two-port in figure 6(b) would therefore be sufficient to fully
characterise the three-port.
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Series feedback three-port S-parameters: Alternate derivation
In the case of series feedback, we could alternatively make use of the following
definition of the series three-port S-parameter, s33[5]:

s33 =
ξ

4− ξ
(15)

Where ξ is the sum of the two-port S-parameters[4], i.e.:

ξ = S11 + S12 + S21 + S22 (16)

Using the relationship in (15) we can now write the complete series three-port S-matrix,
explicitly in terms of the original common emitter two-port S-matrix as follows :

s11 s12 s13
s21 s22 s23
s31 s32 s33

 =



(
S11 +

∆11∆12
4− ξ

) (
S12 +

∆11∆21
4− ξ

) 2∆11
4− ξ(

S21 +
∆22∆12
4− ξ

) (
S22 +

∆22∆21
4− ξ

) 2∆22
4− ξ

2∆12
4− ξ

2∆21
4− ξ

ξ

4− ξ


(17)

Where :

∆11 = 1− S11 − S12

∆12 = 1− S11 − S21

∆21 = 1− S12 − S22

∆22 = 1− S21 − S22
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Calculation of reduced two-port S-parameters

The two-port formed from a three-port device (e.g. transistor) plus feedback
combination is referred to as a reduced two-port[2].

The feedback termination can be thought of as providing an extra degree of freedom to
the standard design procedure since feedback allows a wide range of two-port
S-parameters to be realised.

The two-port S-parameters of the reduced two-port can be expressed in terms of the
three-port S-parameters, sij , and a third port termination, Γ3, as follows[2]:

S′ij = sij +
si3s3jΓ3
1− s33Γ3

(18)

Or in matrix form as :[
S′11 S′12
S′21 S′22

]
=

[
s11 s12
s21 s22

]
+

Γ3
1− s33Γ3

[
s13s31 s13s32
s23s31 s23s32

]
(19)
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Calculation of reduced two-port S-parameters

In the special case where port three of the series feedback three-port in figure 5(a) is
terminated with a short circuit (i.e. Γ3 = 1∠180o), this reduces to :

S11 S12

S21 S22

 =


(
s11 −

s13s31
1 + s33

) (
s12 −

s13s32
1 + s33

)
(
s21 −

s23s31
1 + s33

) (
s22 −

s23s32
1 + s33

)
 (20)

Similarly, when port three of the shunt feedback three-port in figure 6(a) is terminated
with an open circuit (i.e. Γ3 = 1∠0o) equation (19), reduces to:

S11 S12

S21 S22

 =


(
s11 +

s13s31
1− s33

) (
s12 +

s13s32
1− s33

)
(
s21 +

s23s31
1− s33

) (
s22 +

s23s32
1− s33

)
 (21)

Equations (20) and (21) simply express the original two-port S-matrix (which is
Common Emitter/Common Source by default) in terms of the series and shunt
feedback three-port S-parameters, respectively.

Note : the three-port S-parameters for the series and shunt feedback three-ports are
different.
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Configuration conversion

Port 1
Port 2

Port 3

Figure 7 : Series CE three-port definitions for a transistor

I The two-port S-parameters of any transistor configuration may be determined by
starting with the series feedback three-port of 7 then simply rearranging the
three-port S-matrix and adding a short circuit (Γ3 = 1∠180o) to the appropriate
port.

I Depending on the type of device used (BJT or FET), the remaining two-ports
represent either Common Emitter/Source (ces), Common base/gate (cbg) or
Common collector/drain (ccd) configuration depending on which port has been
shorted.

I This provides a simple means of determining the two-port S-parameters for the
three possible transistor configurations from one set of measurements, without
having to measure a different set of S-parameters for each configuration.
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Configuration conversion
Consider the BJT shown in figure 7, which is characterised as a series feedback
three-port network with the following S-matrix:

 b1
b2
b3

 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 a1
a2
a3

 (22)

We can ’reduce’ the three-port of figure 7 to one of the three possible reduced two-port
configurations by connecting one of the ports to ground, as follows:

1. Grounding port 1 gives the common base/gate reduced two-port.
2. Grounding port 2 gives the common collector/drain reduced two-port.
3. Grounding port 3 gives the common emitter/source reduced two-port.

In signal terms, ’grounding’ means applying a short circuit termination (Γ = 1∠180o) to
the port in question.

By convention, two-port S-parameters are usually measured in the common
emitter/source configuration, and manufacturers only supply S-parameter data in this
configuration. In the following sections, we will derive some useful conversion formulae
that allow the reduced two-port S-parameters for the other two configurations to be
calculated given the three-port S-parameters of the circuit in figure 7.
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Common base/gate configuration

To convert from Common Emitter/Source configuration to Common base/gate (cbg) we
swap ports 1 and 3 of figure 4(a). In terms of the original common emitter/source
three-port S-parameters the three-port S-matrix for the cbg configuration then
becomes:

[
scbg

]
=

s33 s32 s31
s23 s22 s21
s13 s12 s11

 (23)

Applying a short circuit at the new port three (the base/gate terminal) results in the
reduced two-port S-matrix of Common base/gate (cbg) configuration. In terms of the
ces three-port S-parameters this can be written as follows:

Scbg
11 Scbg

12

Scbg
21 Scbg

22

 =


(
s33 −

s31s13
1 + s11

) (
s32 −

s31s12
1 + s11

)
(
s23 −

s21s13
1 + s11

) (
s22 −

s21s12
1 + s11

)
 (24)
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Common collector/drain configuration

To convert from Common Emitter/Source configuration to Common collector/drain
(ccd) we swap ports 2 and 3 of figure 4(a). In terms of the original common
emitter/source three-port S-parameters, the three-port S-matrix for the ccd
configuration then becomes :

[
sccd

]
=

s11 s13 s12
s31 s33 s32
s21 s23 s22

 (25)

Applying a short circuit at the new port three (the collector/drain terminal) results in the
reduced two-port S-matrix of Common collector/drain (ccd) configuration. In terms of
the ces three-port S-parameters this can be written as follows:

Sccd
11 Sccd

12

Sccd
21 Sccd

22

 =


(
s11 −

s12s21
1 + s22

) (
s13 −

s12s23
1 + s22

)
(
s31 −

s32s21
1 + s22

) (
s33 −

s32s23
1 + s22

)
 (26)

Equations (24) and (26) allow the direct calculation of the two-port S-parameters for a
transistor in common base/gate configuration or common collector/drain configuration,
respectively, given the common emitter three-port S-parameters of the device.
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Feedback mappings

The third port reflection coefficient, Γ3, is related to the normalised third port
terminating impedance, z3, as follows:

Γ3 =
z3 − 1
z3 + 1

(27)

We can substitute (27) into equation (18) to obtain S′ij in terms of z3 as follows:

S′ij = sij +

si3s3j
{
z3 − 1
z3 + 1

}
1− s33

{
z3 − 1
z3 + 1

} (28)

Rearranging (28) we get:

S′ij = sij +
si3s3j(z3 − 1)

(z3 + 1)− s33(z3 − 1)
(29)

From which z3 can be expressed in terms of S′ij as follows:

z3 =
si3s3j + (S′ij − sij)(s33 + 1)

si3s3j + (S′ij − sij)(s33 − 1)
(30)
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Feedback mappings

We can rearrange (30) into the form of yet another bilinear transformation as follows:

z3 =
AijS′ij + Cij

BijS′ij + Dij
(31)

Where Aij , Bij , Cij and Dij are feedback mapping coefficients defined as:

Aij = (s33 + 1)

Bij = (s33 − 1)

Cij = si3s3j − sij (s33 + 1)

Dij = si3s3j − sij (s33 − 1)

 (32)
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Feedback mappings

By separating equation (31) into real and imaginary parts we get expressions for the
centres and radii of constant normalised third port resistance and reactance circles in
the S′ij plane. The centres are as follows:

Γrij =

B∗ij (Cij − 2rDij) + DijA∗ij
2
(
|Bij |2r − Re(AijB∗ij )

)
 (33)

Γxij = −

2(B∗ij Dij)x − j(DijA∗ij − CijB∗ij )

2
(
|Bij |2x − Im(AijB∗ij )

)
 (34)

The radii are given by :-

γrij =

√√√√|Γrij |2 −
|Dij |2r − Re(D∗ij Cij)

|Bij |2r − Re(AijB∗ij )
(35)

γxij =

√√√√|Γxij |2 −
|Dij |2x − Im(D∗ij Cij)

|Bij |2x − Im(AijB∗ij )
(36)

Where : i = 1, 2 and j = 1, 2
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Feedback mapping example : S11 plane

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5
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3 Port [S] S11 Map
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Feedback mapping example : S12 plane
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Feedback mapping example : S21 plane
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Feedback mapping example : S22 plane
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Classification of feedback mappings

I Feedback mappings can be classified into three classes depending on the radius
of the |Γ3| = 1 circle when mapped onto the respective S-plane[6].

I The three classes shall be referred to as "bounded" , "unbounded" and "inverted",
for reasons which will become apparent.

I The type of mapping is significant because it determines the maximum magnitude
of Sij obtainable with a passive Γ3.

I This is of particular significance in negative resistance oscillator design, where we
normally apply feedback with the express intention of maximising |S11|[1].

I We can determine the shape of the mapped Smith Chart on the Sij plane solely by
the magnitude of s33, as follows[6]:

|s33| > 1
Mapping is Bounded
|Γ3| = 1 circle maps to a circle

|s33| = 1
Mapping is Unbounded
|Γ3| = 1 circle maps to a straight line

|s33| < 1
Mapping is Inverted
|Γ3| = 1 circle maps to a circle
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Bounded Mapping

I If |s33| > 1 then the
mapping is bounded

I The radius of the
|Γ3| = 1 circle in the
S′ij plane is positive,
as illustrated in
figure 8

I Only finite values of
S′ii can be achieved
with a passive
feedback
termination. In
practice, the
optimum realisable
feedback termination
will be a lossless
termination lying
somewhere on the
|Γ3| = 1 circle

Sij plane

r3 = 0

r3 = 1

x3 = 0

Figure 8 : Bounded Feedback Mapping (|Γ3| = 1 circle radius is
positive

© Poole-Darwazeh 2015 Lecture 8 - Three-port S-Parameter design techniques Slide35 of 46



Unbounded Mapping

I If |s33| = 1 then the
mapping is
unbounded

I For an unbounded
mapping the |Γ3| = 1
circle maps to a
straight line in the S′ij
plane, therefore the
radius of the mapped
|Γ3| = 1 circle is
infinite, as shown in
figure 9

I An infinite value of
S′ii can be achieved
using a lossless
third-port termination
having the exact
value :

Γ3 =
1
s33

(37)

r3 = 0

r3 = 1

x3 = 0

Sij plane

Figure 9 : Unbounded Feedback Mapping (|Γ3| = 1 circle radius is
infinite)

© Poole-Darwazeh 2015 Lecture 8 - Three-port S-Parameter design techniques Slide36 of 46



Inverted Mapping
I If |s33| < 1 then the

mapping is inverted
I For an inverted

mapping the radius
of the |Γ3| = 1 circle
in the S′ij plane is
negative, meaning
that the mapped Γ3
Smith Chart is turned
’inside out’ as shown
in figure 10

I An infinite value of
S′ii could, in theory,
be obtained with a
passive, lossy,
feedback termination
having the exact
value :

Γ3 =
1
s33

(38)

r3 = 0

r3 = 1

x3 = 0

Sij plane

Figure 10 : Inverted Feedback Mapping (|Γ3| = 1 circle radius is
negative)
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Generating negative resistance in transistors
I One approach to negative resistance transistor oscillator design is to treat the

transistor as a two-port network, induce negative resistance at one port and
couple the output power from the other port. Let us therefore assume that we
need to design a single transistor two-port sub-circuit having |Sii | > 1.

I Figure ?? shows series feedback two-port sub-circuits created by adding a
passive series feedback termination, Γ3, to the common port of a transistor in the
three possible configurations, with Port 2 of the sub-circuit terminated in the
system characteristic impedance, Zo.

I Bias circuitry has been omitted for simplicity. To implement an oscillator using the
sub-circuits in figure ??, we need to couple a passive resonator to Port 1.

Γ3

Zo

Port 1 Port 2

Γin

(a) CE with series feedback

Γ3

Zo

Port 1 Port 2

Γin

(b) CB with series feedback

Γ3

Zo

Port 1 Port 2

Γin

(c) CC with series feedback
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Generating negative resistance in transistors

The following equation gives the optimum lossless series feedback termination for
negative resistance generation, in terms of the original device two-port S-parameters:

Γ3opt = 1∠ arctan
(
−4Im(ξ)

4Re(ξ)− |ξ|2

)
(39)

Since Φ3opt , the phase angle of the feedback reflection coefficient, Γ3opt , determines
whether the feedback reactance is capacitive or inductive, the implications of equation
(39) can be summarised as follows:

Im(ξ) > 0 Optimum feedback termination is capacitive
Im(ξ) = 0 Optimum feedback termination is resistive
Im(ξ) < 0 Optimum feedback termination is inductive

Thus a ’rule of thumb’ can be stated as follows :

’the type of series feedback reactance required to generate negative resistance in a
given transistor configuration depends only on the sign of the imaginary part of the sum
of the device two-port S-parameters for that configuration’[7].
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The active isolator
We can apply feedback mappings to help us design an active isolator based on a single
transistor, the goal being to apply feedback so as to minimise S12. The feedback can
be either shunt or series type. The value of feedback termination, Γ3, required to
achieve unilateralisation can be determined by setting S12 = 0 in equation (18) and
solving for Γ3 :

Γ3 =
s12

s12s33 − s13s32
(40)

If the required value of implies an inductive shunt feedback termination, we need to
include a DC blocking capacitor, Cblock , to separate the collector and base DC bias
voltages, as shown in figure 11(e). This capacitor must be large enough so that its
reactance will be negligible at the frequency of operation.

Γ3

Port 1
Port 2

(d)

L3
Cblock

Port 1
Port 2

(e)

Figure 11 : Unilateralisation of a transistor using shunt feedback
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Reverse feedback mappings
An alternative approach to analysing the effect of feedback on a transistor is to plot
circles of constant |Sij | on the Γ3 plane.

We refer to these as reverse mapping although they are not mappings of the entire Sij ,
and only provide magnitude information, not phase information about the S-parameters
obtainable. They are, nonetheless, a useful tool in certain circumstances.

Consider a reduced two-port consisting of a transistor with a shunt or series feedback
termination, Γ3, as shown in figure 4(b) or 4(e). We have already established that any
point on the Sij plane corresponds to a point on the Γ3 plane and vice versa according
to the bilinear transformation of (18).

From equation (18), we can state the magnitude of the reduced two-port S-parameter
as follows:

|S′ij | =

∣∣∣∣ sij − (sijs33 − si3s3j)Γ3
1− s33Γ3

∣∣∣∣
Which can be rewritten as:

|S′ij | =

∣∣∣∣ sij −∆ijΓ3
1− s33Γ3

∣∣∣∣ (41)

Where : ∆ij = sijs33 − si3s3j
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Reverse feedback mappings
Equation (41) can be rearranged into an equation that describes a circle in the reduced
two-port Sij plane with a centre at:

ΓTij =
|S′ij |

2s∗33 − sij∆∗ij
|S′ij |2|s33|2 − |∆ij |2

(42)

and a radius given by:

γTij =

√√√√√
|ΓTij |2 −

|S′ij |2 − |sij |2

|S′ij |2 |s33|
2 − |∆ij |2

 (43)

Further manipulation of equation (43) results in the following, simpler expression:

γTij =
|S′ij ||∆

∗
ij − s∗33sij |

|S′ij |2|s33|2 − |∆ij |2
(44)

I If the required value of |Sij | is known then the constant
∣∣Sij
∣∣ circle allows the

corresponding values of Γ3 to be determined.
I Since every point on a constant |Sij | circle on the Γ3 plane represents a complex

value of Γ3, there are an infinite number of different values of Γ3 for any given
value of |Sij |
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Reverse feedback mappings

Consider the specific case of the |Sij | = 1 circle, which, in the case of S11 and S22,
defines the boundary between positive and negative resistance at the input and output
ports of the device, respectively.

Γ3 plane

ΓTij

γTij

(a) Bounded (|s33| < 1)

Γ3 plane

ΓTij

(b) Unbounded (|s33| = 1)

Γ3 plane

ΓTij

γTij

(c) Inverted (|s33| > 1)

Figure 12 : Reverse feedback mappings
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