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Intended Learning Outcomes

I Knowledge
I Understand the nature and impact of phase noise in oscillators.
I Be familiar with the origin, application and limitations of Leeson’s equation.
I Be familiar with analytical phase noise models for both feedback and negative resistance

oscillators, and be able to compare the two models.
I Understand how a simple phase noise model implies certain design guidelines for low

noise oscillators and be able to apply these guidelines.
I Be familiar with various phase noise measurement techniques.

I Skills
I Be able to select suitable transistors and resonators for use in low noise oscillator design.
I Be able to design an oscillator with low phase noise based on the tools and techniques

presented.
I Be able to carry out basic phase noise measurements.
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Definition of phase noise

An ideal oscillator will produce only one sinusoidal frequency component at the
nominal centre frequency. Real world oscillators produce a signal which is more
complex, containing other, unintended, frequency components. We need a figure of
merit by which to measure the purity of a given oscillator output.
The signal output from an ideal oscillator can be described as :

V(t) = cos(ωot) (1)

Where ωo is the centre frequency and the amplitude is assumed to be unity. The output
of a real oscillator output will contain both amplitude and phase noise components. We
can represent the output of a real oscillator as :

V(t) = [1 + e(t)]cos(ωot + Φ(t)) (2)

Where Φ(t) is the time varying phase component and e(t) is the amplitude noise
component added to the nominal unit signal amplitude. Due to the inherent amplitude
limiting mechanism already described, e(t) will be significantly attenuated, so that
[1 + e(t)] ≈ 1. Nevertheless, the presence of both amplitude and phase fluctuations
cause sidebands in the output voltage spectrum of the oscillator. Figure 1 shows the
difference in the output spectrum of an ideal oscillator with that of a real oscillator.
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Definition of phase noise
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Figure 1 : Ideal and real oscillator output signals and spectra : (a) Ideal oscillator signal, (b) Real
oscillator signal, (c) Ideal oscillator spectrum, (d) Real oscillator spectrum
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Definition of phase noise

I The US National Institute of Standards
and Technology defines single
sideband (SSB) phase noise as the
ratio of the spectral power density in a
1 Hz bandwidth, measured at an offset
frequency from the carrier to the total
power of the carrier signal, as
illustrated in figure 2.

I The symbol used to represent this
quantity is L {∆f}, which is
pronounced "script L of delta f ", or
sometimes simply L {fm} ("script L of
f m"), in cases where fm is taken to
represent the frequency offset.
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Figure 2 : Noise at offset from a carrier

The basic definition of L {∆f}, which is usually expressed in decibels, is as follows :

L {∆f}dB = 10 log
[Power Spectral Density in 1 Hz bandwidth at (fo + ∆f)

Pcarrier

]
(3)
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Typical phase noise profile

The unit of phase noise is dBc/Hz (dB
relative to carrier frequency, per 1 Hz
offset). A typical phase noise plot is shown
in figure 3, which shows four distinct
regions, in order of distance from the
carrier :
(i) An initial section, close to the carrier,

which has a slope of 1/f3
(-30dB/decade).

(ii) A second section having a slope of
1/f2 (-20dB/decade).

(iii) A third section having a slope of 1/f
(-10dB/decade).

(iv) A final horizontal section
corresponding to the thermal noise
floor.

1/f3region

(−30dB/decade)

1/f2region

(−20dB/decade)

1/fregion

(−10dB/decade)

Thermal noise
region

L {∆f}dB

∆f∆ω1/f3
ωo
2Q

Figure 3 : Typical oscillator phase noise profile
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Why oscillator phase noise is important?

I The ’skirts’ surrounding the centre
frequency in figure 2 represent
additional radio energy produced by
the oscillator outside of its nominal
design frequency

I If the oscillator in question is a local
oscillator in a transmitter then this
unwanted energy may overwhelm
nearby weak channels

I Because the phase noise spectral
density grows directly with the
transmitted signal power, and at a
given point in space, the noise
sidebands of a strong transmitter may
be greater than another faded or
attenuated signal occupying the same
frequency, as shown in figure 4.
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Figure 4 : Interference caused by phase noise
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Why oscillator phase noise is important?
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The thermal noise component of phase noise
I Thermal noise is ubiquitous in any electronic system. It can therefore be expected

to form an important component of any phase noise in an oscillator.
I In any perfectly resistively matched system at room temperature, which is normally

taken as being 290 K which is equivalent to 17oC, the background thermal noise
spectral density level is approximated by:

N = kBT = 1.38× 10−23 × 290 = −174dBm/Hz (4)

This is the minimum level of noise that exists in any 1 Hz bandwidth at room
temperature, and is commonly referred to as the thermal noise floor

I This thermal noise is composed of both amplitude noise and phase noise
components which are assumed to be approximately equal; a concept embodied
in the Equipartition Theorem [3, 1]. Whilst the treatment of noise in chapter??
focussed on amplitude noise, the discussion in this chapter focusses on the phase
component of the noise

I It is normally assumed that, when talking about oscillators, the amplitude noise
portion of the thermal noise floor is suppressed by the amplitude limiting
mechanism discussed previously. This means that the thermal phase noise floor is
3 dB below the noise floor given by (8), i.e. :

Nphase =
kBT
2

= −177dBm/Hz (5)
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The thermal noise component of phase noise
The active element in an oscillator will also inevitably contribute an additional quantity
of noise to the thermal noise floor. The amount of noise added by the amplifier is
measured as the ratio of output noise to input noise power, adjusted for the gain of the
amplifier. This is quantified in terms of the noise factor (F ), which, when expressed in
dB, is referred to as the noise figure (NF ). We can thus write the equivalent total
thermal phase noise at the input of an amplifier of noise factor F as :

Nphase =
FkBT
2

(6)

In terms of dB, (6) can be expressed as :

Nphase(dB) = 10 log
[
FkBT
2

]
= −177dBm/Hz + (NF)dB (7)

If we now apply a signal, of power Pin, and a specific frequency, fo, to the input of the
amplifier in question, we can compute the thermal phase noise power in a 1 Hz
bandwidth at some frequency offset ∆f away from fo by the ratio :

L {∆f} =

(
kBTF
2Pin

)
(8)

The reader will notice that the right hand side of equation (8) does not contain term ∆f .
This is because this equation describes a simplistic case for an oscillator where all the
noise is thermal noise having a response which is flat irrespective of offset frequency.
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Flicker noise in oscillators

I 1/f noise, sometimes called
’flicker noise, is specific to
semiconductor devices.

I The magnitude of flicker
noise is inversely proportional
to frequency.

I Flicker noise in
semiconductor devices is
believed to be caused by
contamination and crystal
defects in pn junctions.

1
f
noise region

(−30dB/decade)

Thermal noise
region

L {∆f}dB

∆ffc

Figure 5 : Phase noise profile with 1/f (flicker) noise
component

I 1/f noise is directly related to the current density in the transistor.
I Transistors with high Icmax used at low currents have best 1/f performance.
I 1/f noise is especially pronounced in FETs with small channels
I 1/f noise gets upconverted in oscillators and results in noise sidebands either side

of the carrier.
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Flicker noise in oscillators

I The flicker corner frequency, fc , is defined at the point at which the flicker noise
power equals the underlying thermal noise power. In other words, this is the point
at which the total noise power increases by 3dB as we approach fo from far away

I At this point, to avoid confusion, we will standardise on the use of fm to represent
the offset frequency in Hz distant from the carrier, i.e. the same quantity that we
have referred to as ∆f up until this point

I From figure 5 we can write an empirical expression for L {fm} that extends (8) to
include the flicker noise component as follows :

L {fm} =
kBTF
2Pin

(
1 +

fc
fm

)
(9)

By inspection we can see that, when fm >> fc , (9) approximates (8)
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Modelling oscillator phase noise
The most well known model of oscillator phase noise is that originally proposed by
Professor D. B. Leeson in 1966 [4]. Leeson’s model assumes a simple feedback
oscillator model shown in figure 6, and is based on the following assumptions:
(i) The amplifier is noiseless, has a high gain and limits at a level corresponding to

the nominal output power.
(ii) The resonator is a bandpass type centred at the frequency of oscillation and has a

loaded Q of Ql .
(iii) The noise source represents all noise sources in the oscillator, including those

introduced by the amplifier and the resonator.
(iv) The limiting action of the amplifier removes the AM component of the noise,

leaving only the phase component.

noise

A+ vφo

Bandpass
Resonator

Figure 6 : Leeson’s feedback oscillator model
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Leeson’s model of oscillator phase noise

Based on the simple model of figure 6 Professor Leeson proposed what has come to
be known as the Leeson equation, which can be stated as follows:

L {fm} =

(
FkBT
2PS

)[
1 +

(
f0

2Ql fm

)2](
1 +

fc
fm

)
(10)

where :
F = the ’effective noise factor’ of the amplifier.
PS = the oscillation signal power.
fo = the oscillator centre frequency.
Ql = the loaded Q of the resonator.
fm = the offset frequency from the carrier at which phase noise
is measured (in a 1Hz bandwidth).
fc = the corner frequency between the 1/f2 and 1/f3 slope
region.
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Leeson’s model of oscillator phase noise

Leeson’s equation can be visualised as in figure 7.

L {fm} = ÷

Thermal noise
power in 1Hz

at fm

Carrier power
at fo

×
Resonator
bandwidth
correction
factor

×
Flicker
noise

correction
factor

Figure 7 : Diagrammatic representation of Leeson’s equation
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Leeson’s model of oscillator phase noise

I Leeson’s equation is essentially an
empirical description of the observed
phase noise profile shown in figure 8.

I One key message of Leeson’s
equation is that the spectrum
increases as 1/f2 when fm is less than
fo/2Q and as 1/f3 when fm is also
less than fc , which is almost always
less than the measured device 1/f
corner frequency because the
modulation conversion does not raise
the noise above the thermal floor.

1
f2

region

1
f

region

Thermal noise
region

L {∆f}dB

∆f∆ω1/f3
ωo
2Q

Figure 8 : Phase noise profile according to
Leeson’s model
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Limitations of Leeson’s model

1. It assumes that the oscillator operates at the center frequency of the resonator.
The fact this condition is rarely met in practice, especially at high frequencies,
means that real resonators will be less effective at suppressing phase noise than
the Leeson equation predicts.

2. The amplifier will not be matched for maximum power transfer in the input circuit,
neither will it be matched for minimum noise factor, making the parameters PS and
F in the Leeson equation difficult to predict.

3. The loaded Q of the resonator is a parameter that is difficult to determine in
practice[5].

4. It does not take account of an observed 1/f3 phenomenon that results in higher
noise density at small frequency offsets from the carrier.

5. Being a linear model, it cannot account for non-linear phenomena, such as the
conversion of amplitude modulated noise components into phase modulated noise
components, referred to as ’AM-PM conversion’ [6].

6. Being a Linear Time Invariant (LTI) model, it is not suitable for modelling some
common classes of oscillators, such as relaxation and ring oscillators.
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Analytical phase noise models : Feedback oscillator

LRLoss
C

Rin

Rin

Rout

vin1

vin2
(noise)

vout

(feedback)

Feedback Resonator(β)

Figure 9 : Oscillator feedback model[1]
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Analytical phase noise models : Feedback oscillator

The voltage transfer function of the amplifier in figure 9 is given by :

vout = G (vin1 + vin2) = G (βvout + vin2) (11)

Where G is the voltage gain of the amplifier between either of the inputs separately and
the output, and β is the voltage feedback factor defined by the resonator. In this case
we are primarily interested in the effect of the injected noise voltage, Vin2 on the output.
From (11), therefore, we can write :

vout
vin2

=
G

1− (βG)
(12)

The resonator voltage feedback factor, from output to input 1 of figure 9, can be derived
by inspection :

β =
Rin

Rout + Rloss + Rin + j (ωL− 1/ωC)
(13)

We are interested in the behaviour of the resonator at frequencies very close to the
carrier, i.e. ω = ωo ±∆ω, where ωo is the carrier frequency and ∆ω is a small
frequency offset.
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Analytical phase noise models : Feedback oscillator

Let us consider just the imaginary term, (ωL− 1/ωC), in the denominator of (13),
which can be re-written as follows :

(ωL− 1/ωC) =

(
ω2LC − 1

)
ωC

(14)

Substituting ω = ωo ±∆ω for ω in (14) gives :

(ωo ±∆ω)2LC − 1
(ωo ±∆ω)C

(15)

As we are only interested in very small values of ∆ω, we can apply the binomial
approximation in this specific case, which allows us to write :

(ωo ±∆ω)2 ≈ ωo (ωo ∓ 2∆ω) (16)

Applying (18) to (15) gives:

(ωo ±∆ω)2LC − 1
(ωo ±∆ω)C

≈
ωo(ωo ∓ 2∆ω)LC − 1

(ωo ±∆ω)C
(17)
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Analytical phase noise models : Feedback oscillator

As we are only interested in very small values of ∆ω, we can apply the binomial
approximation in this specific case, which allows us to write :

(ωo ±∆ω)2 ≈ ωo (ωo ∓ 2∆ω) (18)

Applying (18) to (15) gives:

(ωo ±∆ω)2LC − 1
(ωo ±∆ω)C

≈
ωo(ωo ∓ 2∆ω)LC − 1

(ωo ±∆ω)C
(19)

Noting that ω2
o = 1/LC, we can reduce (19) to:

∓2ωo∆ωL
(ωo ±∆ω)

(20)

Since ωo � ∆ω we can further approximate (20) to simply:

∓ 2∆ωL (21)

Now, we note that the loaded Q of the resonator, QL, is defined by :

QL =
ωoL

(Rout + Rloss + Rin)
(22)
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Analytical phase noise models : Feedback oscillator

We can now combine (13) with (21) and (22) to give us the feedback factor in terms of
∆ω and QL, for small values of ∆ω :

β =
Rin

(Rout + Rloss + Rin)

[
1± 2jQL

∆ω

ωo

] (23)

Let us now consider the feedback factor at the centre frequency (i.e. at resonance), βo.
If we set ∆ω = 0 in (23) we then have :

βo =
Rin

Rout + Rloss + Rin
(24)

Which accords with our understanding that the net reactance of the resonator,
(ωL− 1/ωC), will be zero at resonance, resulting in a purely real value of βo.
Since the unloaded Q of the resonator, Qo, is simply :

Qo =
ωoL
Rloss

(25)
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Analytical phase noise models : Feedback oscillator
We can define the ratio :

QL
Qo

=
Rloss

Rout + Rloss + Rin
(26)

Which implies : [
1− QL

Qo

]
=

Rout + Rin
Rout + Rloss + Rin

(27)

Now, by employing (27) in (24) we can write :

βo =
Rin

Rout + Rin

[
1− QL

Qo

]
(28)

With reference to (23), and replacing angular frequency by ω = 2πf , we can write the
overall resonator response in terms of βo as :

β = βo

 1

1± 2jQL
∆f
fo

 (29)

Or in its fuller form as :

β =
Rin

Rout + Rin

[
1− QL

Qo

] 1

1± 2jQL
∆f
fo

 (30)
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Analytical phase noise models : Feedback oscillator

We are now in a position to define the voltage transfer characteristic of the amplifier in
figure 9 by incorporating (30) into (12), thus :

Vout
Vin2

=
G

1− G
[

Rin
Rout + Rin

] [
1− QL

Qo

] 1

1± 2jQL
∆f
fo


(31)

Under steady state oscillation conditions the voltage gain of the amplifier, at f = fo,
according to the Barkhausen criterion, is defined by :

G =
1
βo

=
1

Rin
Rout + Rin

[
1− QL

Qo

] (32)
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Analytical phase noise models : Feedback oscillator
Replacing the term G in (31) by (32) gives :

Vout
Vin2

=
G

1− 1

1± 2jQL
∆f
fo

(33)

=
1[

Rin
Rout + Rin

] [
1− QL

Qo

]1− 1

1± 2jQL
∆f
fo


(34)

The Q multiplication process causes the noise to fall to the thermal noise floor within
the 3dB bandwidth of the resonator[1]. The noise of interest therefore occurs within the
boundaries of Ql(∆f/fo) << 1, so we can apply the binomial approximation to (33)
resulting in a further simplification :

Vout
Vin2

=
G

±2jQL
∆f
fo

(35)

=
1[

Rin
Rout + Rin

] [
1− QL

Qo

] [
±2jQL

∆f
fo

] (36)
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Analytical phase noise models : Feedback oscillator

The gain of the feedback system has been incorporated into (35) in terms of Q/Qo,
since the gain is set by the insertion loss of the resonator.
We now turn our attention to the thermal noise input voltage at input 2 of the amplifier in
figure 9, which we can write as :

Vin2 =
√

4kBTBRin (37)

Where kB is Boltzmann’s constant, T is the absolute temperature and B is the
bandwidth of interest. Since we are interested in the ratio of noise to signal power, we
will deal in terms of squared voltages. If the source resistance is equal to Rin, the total
noise power available at the input of the amplifier is equal to kBTB.

Since we are specifically interested in noise power in a 1 Hz bandwidth at an offset ∆f
from the carrier, we set B = 1. We relate the noise power at the amplifier input to that
at the output via the amplifier noise factor, F .
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Analytical phase noise models : Feedback oscillator

If we apply the above reasoning to (35) we can write the square of the output voltage in
a 1 Hz bandwidth at an offset, fm, from the carrier as :

(Vout(fm))2 =
FkBTRin

4Q2
L

[
Rin

Rout + Rin

]2 [
1− QL

Qo

]2
(

fo
fm

)2
(38)

Since Qo is fixed by the type of resonator, but the ratio (QL/Qo) can be varied by
adjusting the resonator coupling, we can rewrite (38) in a more useful form that
separates constants and variables, thus :

(Vout(fm))2 =
FkBTRin

4Q2
o

(
QL
Qo

)2 [ Rin
Rout + Rin

]2 [
1− QL

Qo

]2
(

fo
fm

)2
(39)
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Analytical phase noise models : Feedback oscillator
Equation (39) incorporates both amplitude and phase components of the input noise
signal. In practice, the amplitude fluctuations are largely suppressed by the amplitude
limiting function of the amplifier. This has the effect of halving the total input noise
power defined in (38). A more correct equation for the square of the output voltage is
therefore :

(Vout(fm))2 =
FkBTBRin

8Q2
o

(
QL
Qo

)2 [ Rin
Rout + Rin

]2 [
1− QL

Qo

]2
(

fo
fm

)2
(40)

The generally accepted definition of phase noise is the ratio of output noise power in a
1 Hz bandwidth at a frequency offset fm to the total output power. If the total output
power is Vout max rms, then we can write :

L {fm} =
(Vout(fm))2

(Vout max rms)2
(41)

Applying (40) gives :

L {fm} =
FkBTRin

8Q2
o

(
QL
Qo

)2 [ Rin
Rout + Rin

]2 [
1− QL

Qo

]2
(Vout max rms)2

(
fo
fm

)2
(42)
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Analytical phase noise models : Feedback oscillator
PRF is limited by the maximum voltage swing at the output of the amplifier and the
value of Rout + Rloss + Rin, i.e. :

PRF =
(Vout max rms)2

Rout + Rloss + Rin
(43)

Equation (42) now becomes :

L {fm} =
FkBT(Rout + Rin)2

8Q2
o

(
QL
Qo

)2
Rin

[
1− QL

Qo

]2
PRF (Rout + Rloss + Rin)

(
fo
fm

)2
(44)

We note that :

Rout + Rin
Rout + Rloss + Rin

=

[
1− QL

Qo

]
(45)

So, the ratio of sideband noise in a 1 Hz bandwidth at an offset ∆f to the total power
given in (44) therefore becomes :

L {fm} =
FkBT

8Q2
o

(
QL
Qo

)2 [
1− QL

Qo

]
PRF

[
Rout + Rin

Rin

](
fo
fm

)2
(46)

Everard outlines three possible cases, as follows :
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Case 1 : High efficiency oscillator

If Rout ≈ 0, as would be the case for any high efficiency oscillator then (46) simplifies to
:

L {fm} =
FkBT

8Q2
o

(
QL
Qo

)2 [
1− QL

Qo

]
PRF

(
fo
fm

)2
(47)
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Case 2 : Microwave amplifier
If Rout = Rin, as would be the case for most microwave amplifiers then (46) simplifies to
:

L {fm} =
FkBT

4Q2
o

(
QL
Qo

)2 [
1− QL

Qo

]
PRF

(
fo
fm

)2
(48)

PAVO =
(Vout max rms)2

4Rout
(49)

Equation (46) then becomes :

L {fm} =
FkBTRin

8Q2
o

(
QL
Qo

)2 [ Rin
Rout + Rin

]2 [
1− QL

Qo

]2
PAVO(4Rout)

(
fo
fm

)2
(50)

which can be rearranged as :

L {fm} =
FkBTRin

32Q2
o

(
QL
Qo

)2 [
1− QL

Qo

]2
PAVO

[
(Rout + Rin)2

RoutRin

]2 (
fo
fm

)2
(51)
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Case 3 : Matched output

The term :

(Rout + Rin)2

RoutRin
(52)

attains a minimum value of four when Rout = Rin. In this case (46) becomes :

L {fm} =
FkBT

8(Qo)2
(
QL
Qo

)2 (
1− QL

Qo

)2
PAVO

(
fo
fm

)2
(53)
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Feedback oscillator phase noise model : summary

A general equation can be written which describes all three cases :

L {fm} = A FkBT

8(Qo)2
(
QL
Qo

)2 (
1− QL

Qo

)N
P

(
fo
fm

)2
(54)

Where the parameters A and N are determined as follows :
1) N = 1 and A = 1 if P is defined as PRF and ROUT = 0 (47).
2) N = 1 and A = 2 if P is defined as PRF and ROUT = RIN (51).
3) N = 2 and A = 1 if P is defined as PAVO and ROUT = RIN (53).
If we take assumption 3, equation (54) becomes :

L {fm} = 1 FkBT

8(Qo)2
(
QL
Qo

)2 (
1− QL

Qo

)2
PAVO

(
fo
fm

)2
(55)
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Analytical phase noise models : Negative resistance oscillator

The analytical model of phase noise for a feedback oscillator can be extended to cover
the negative resistance oscillators also. Once again, we will follow Professor Everard’s
analysis[2] here, with reference to figure 10.

in −R L C RLoss RLoad

Figure 10 : Negative resistance oscillator model[2]
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Comparison of feedback and negative resistance oscillator phase noise equations
It is interesting to compare the phase noise equation for a negative-resistance oscillator
(??) with the phase noise equation for a feedback oscillator (??), as follows :

Feedback Oscillator Negative Resistance Oscillator

L {fm} =
2kBT

Q2
oPAVO

(
fo
fm

)2
L {fm} =

kBT
2Q2

oP

(
fo
fm

)2

I The equation for a feedback oscillator is four times larger than that for the negative
resistance oscillator.

I A difference of a factor of two can be explained by the fact that P in the negative
resistance is the power dissipated in the resonator, whereas PAVO is twice the
value of the power dissipated in the resonator under optimum operating conditions.
The other factor of two is probably due to the fact that the SNR is set by the power
at the input of the amplifier, which is 1/4 in the case of the feedback oscillator.

I It may still, therefore, be important in some circumstances (crystal oscillators, for
example) in which the power in the resonator must be kept low, that the
negative-resistance oscillator improves the phase noise by a factor of two for the
same power dissipated in the resonator[2].
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Low Noise Oscillator Design

Two key elements of low phase-noise oscillator design :

1. A resonant circuit with a high Q-factor

2. Low noise design of the active circuit
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Low Noise Oscillator Design : Resonator

1. Reduce noise by maximizing the reactive energy by means of a high RF voltage
across the resonator. Use a low LC ratio.

2. To construct a resonant structure with a high Q-factor low losses are required in all
of the constituent parts, such as :

I Q of resonator device itself
I Series resistance of capacitors
I Series resistance of any tuning diodes
I Loss of printed circuit board
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Low Noise Oscillator Design : Transistor

1. Low 1/f noise of the transistor in the oscillator is very important, because the 1/f
noise appears as sideband noise around the carrier frequency of the oscillator
output signal.

2. The basic rules to select the right transistor for an optimized design are:
I The best oscillator transistor is a device with the lowest possible fT. A commonly used

criteria is: fT ≤ 2xfosz .
I The 1/f noise is directly related to the current density in the transistor. Transistors with

high Icmax used at low currents have best 1/f performance.
I However, the fT of a transistor drops as current decreased. Additionally, the parasitic

capacitances of a high current transistors are higher due to the larger transistor
geometry.
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The direct method

The simplest and most intuitive method of measuring phase noise is to connect the
oscillator to a high quality spectrum analyser, as shown in figure 11. The power of the
carrier is measured and a measurement of the power spectral density of the oscillator
noise, at a specified offset frequency, is also made and referenced to the carrier power
level.

Oscillator
under test

Figure 11 : Phase noise measurement : direct method

Although the direct method of measurement is simple and uses a readily available
piece of test equipment (the spectrum analyser), it has some serious limitations.
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The direct method

The biggest limiting factor is the quality of the spectrum analyser being used, but all
spectrum analysers share some common limitations, as follows :

1. The 3 dB bandwidth and the noise bandwidth of the analyser’s resolution
bandwidth filters are not identical and correction factors must be used.

2. There are errors associated with the way the peak detector inside most spectrum
analysers responds to noise, meaning that RMS noise power will be
under-reported by a factor of 1.05 dB. In addition, the logging process in spectrum
analysers tend to amplify noise peaks less than the rest of the noise signal
resulting in a reported power that is less than the actual noise power. Combining
these two effects results in a noise power measurement that is 2.5 dB below the
actual noise power.

3. The noise floor of the spectrum analyser and the residual FM of the analyser’s
own local oscillator will limit the accuracy of the measurement.

4. Lastly, spectrum analysers generally only measure the scalar magnitude of noise
sidebands of the signal and are not able to differentiate between amplitude noise
and phase noise. Finally, the measurement process using a spectrum analyser
involves having to make a noise measurement at each frequency offset of interest.
This will be very time consuming if done manually, although it can be automated if
the spectrum analyser is programmable.
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The phase detector method
I The basic phase detector method is shown in figure 12
I Two sources, at the same frequency and in phase quadrature, are presented to a

double-balanced mixer which, together with a low pass filter, acts as a phase
detector.

I The difference frequency emerging from the low pass filter has an average voltage
level of 0V. Riding on this DC signal are AC voltage fluctuations proportional to the
combined phase noise of the two sources. The baseband signal is amplified and
then fed into a baseband spectrum analyser.

I In order for this method to work, phase quadrature between the oscillator under
test and the reference oscillator must be strictly maintained. This is achieved by
making the frequency of the reference oscillator electronically tunable and driving
this from a quadrature detector connected to the output of the phase detector.

Quadrature
monitor and
phase lock

Low
Pass
Filter

Reference
Oscillator

Oscillator
under test

Amplifier

Baseband
analyser

Figure 12 : Phase noise measurement : Phase detector method
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The delay line/frequency discriminator method
I In contrast to the phase detector method, the frequency discriminator method of

phase noise measurement has the advantage of not requiring a reference source
phase locked to the oscillator under test, and is therefore somewhat simpler and
lower cost to implement

I The key element in the measurement set-up is an analogue delay line, as shown
in figure 13

I Short term frequency fluctuations in the oscillator under test are converted into
voltage fluctuations that can be measured by a baseband analyser. This process
is accomplished in two stages: first, frequency fluctuations are converted into
phase fluctuations and then these phase fluctuations are converted into voltage
fluctuations

Splitter Mixer

Phase
shifter

Delay
(τd)

Low
Pass
Filter

Oscillator
under test Amplifier

Baseband
analyser

Figure 13 : Phase noise measurement : Frequency discriminator method
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